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where the addr field contains the address of a client transport end point that initiates the
connection request. The opt field contains any protocol-specific parameters. The udata field
contains any optional user data to be sent along with the connection request. The sequence
field contains an integer ID that is used to uniquely identify each connection.

The following code checks for a connection request in nonblocking mode. Notice that
t_alloc is used to allocate the storage for the call variable. This is to ensure that the maxlen
fields in the addr, opt, and udata are set to reflect the size of their buf member fields.

struct t_call *call = (struct t_call*)t_alloc (fd, T_CALL,T_ALL);
if (Icall)
t_error(“t_alloc fails for T_CALL");
else do {
if (t_listen(fd, call) == 0) break; // got a connect request
if (t_errmo!l=TNODATA) {
t_error(“t_listen fails”)
exit(1);
}
/* do something elise */
} while (1);

The above example first calls ¢_alloc to aliocate dynamic storage for a struct t_call
object and uses call to.point to it. After that, the program goes into a loop where it calls
t_listen to check for connection requests iteratively. If #_listen returns a zero value, a connec-
tion request is detected, and the program breaks out of the loop. However, if _listen returns a
nonzero value the t_ermno global variable is checked. If 1_errno is not set to TNODATA,
some other error condition has occurred, and the program calls 7_error to report a diagnostic
message, then quits. Otherwise, a connection request is not yet available, and the program
does something else, resuming the #_listen call afterward.

1145 t_accept

The function prototype of the ¢_accept APl is:

#include <tiuser.h>

int t_at;ccpt (int fd, int newfd. struct t_call* call );

" This function accepts a client connection request that is received via a t_listen call.
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The fd value designates which server transport end point accepts the connection
request. The newfd value designates a transport end point to be connected to the client trans-
port end point. The newfd value may or may not be the same as fd. If they are the same, the
transport end point must not have other connection requests pending, or this function will
fail. On the other hand, if they are not the same value, the newfd must be allocated via a
t_open call prior to its use in this function call. Then, after the #_accept call returns success-
fully, the fd can be used to accept more connection requests from other clients, and the newfd
1s used exclusively to communicate with the client whose transport address is specified in the
call value. The call value is obtained from a t_listen call.

The function returns a -1 if it fails, a O value if it succeeds.

The following code spawns a child process to accept connection requests from one or
more client processes. Note that the transport end point designated by fd is assumed to oper-
ate in blocking mode:

struct t_call *call = (struct t_call*)t_allor: (fd, T_CALL,T_ALL);

if (Icall)
t_error(“t_alloc fails for T_CALL);
else while (t_listen(fd, call) == 0) // got one connect request

switch (fork()) {
case -1: perror(“fork”); break; /I parent process. fork fails
default: break; /I parent process. fork succeeds
case 0: o // child process to talk to client
if ((newtd=t_open(“/dev/ticotsord”,0_RDWR,0))==-1 |
t_bind(newfd,0,0)==-1)
t_error(“t_open or t_bind fails”);
else if (t_accept(fd, newfd, call)==-1)
t_error(“t_accept fails\n");
else {
t_close(fd);// don't need this anymore
/* now communicate with a client via the newfd */

}

In the above example, ¢_alloc is called to allocate a dynamic storage for a struct ¢_call
object to store a client transport address. The struct ¢_call object is referenced by the call
variable. If the 7_alloc call sutceeds, the program goes into a loop, executing the t_listen
function to wait for client connection requests to arrive. For each connection request received,
the program creates a child process to deal with that client. Specifically, each child process
creates a new transport end point that is of the same transport type as that designated by fd.
The new transport end pgint is referenced by the newfd variable, and it is bound an arbitrary
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name (as assigned by the transport provider). After that, the child process calls the 7_accept
function to connect the newfd end point to the client’s end point. If the ¢_accept call succeeds,
the child process closes its copy of the fd descriptor, as it is no longer needed in that process
and begins to communicate with the client.

11.4.6 t_connect

The function prototype of the ¢_connect APl is:

#include <tiuser.h>

int t_connect ( int fd, struct t_call* inaddr, struct t_call* outaddr );

This function sends a connect request to the server transport end point. The fd value
designates which client transport end point is to be connected to that of the server. The server
transport address is specified in the inaddr value. The address of the actual server transport
end point bound is returned via the outaddr value.

 The inaddr value must not be NULL, but the outaddr value may be NULL if the bound
server transport address is a don’t-care.

By default this function blocks the calling process until a server transport end point is
connected or until a system error occurs. However, if fd is specified to be nonblocking, this
function initiates a connection request and returns immediately (if a server transport end
point is not connected right away). The 7_errno global variable is set to TNODATA. The cli-
ent can later call the 1_rcvconnect function to check on the completion of the connect request.
The function prototype of the ¢_rcvconnect function is:

N

#include <tiuser.h>

int t_rcvconnect ( int fd, struct t_call* outaddr );

This function returns a -1 if it fails, a O value if it succeeds.

The following code sets a transport end point descriptor to be nonblocking via a fentl
call. It then attempts to connect to a server in a nonblocking manner. The server transport
address is assumed to be 3.
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struct t_call *call = (struct t_call*)t_alloc (fd, T_CALL, T_ALL);
if (Icall) {
t_error(“t_alloc fails for T_CALLY);
exit(1);
}
call->addr.len = sizeof(int); // set the server’s transport address

*(int*)call->addr.buf = 3;
I* set the fd to be nonblocking. This can also be set at the t_open call */
if ((fig=fentl(fd, F_GETFL,0)==-1 Il
fentl(fd,F_SETFL,figiO_NONBLOCK)==-1) {
perror(“fcntl”);
exit(2);
}
if (t_connect(fd, call, call)==-1) {
while (t_errno==TNODATA) { // poll for connect request to complete
/* do something else */
if (t_rcvconnect(fd, call)==0) break;
}
if (t_errno!=TNODATA) {
t_error(“t_connect or t_rcvconnect fails”);
exit(4);
)
} /*t_connect*/
* start communicating with a server transport end point */

In the above example, fentl is called to set the transport end point designated by fd to be
nonblocking. The program then calls ¢_connect to establish a connection with a server trans-
port end point. The server transport address is assumed to be 3 (for local connection only). If
t_connect does not succeed, the program goes into a loop where it does something else then
calls 1_rcvconnect to check on the completion of the connection request. The loop terminates
when either ¢_rcvconnect retuns a success status (return value is zero) or an error occurs, and
t_errno is not set to TNODATA. If either the t_connect or the t_rcvconnect call succeeds, the
program begins communicating with the server process.

11.4.7

t_snd, t_sndudata

The function prototypes of ¢_snd and t_sndudata APIs are:
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#include <tiuserh>

int t_snd (int fd, char* buf, unsigned len, int flags );
int t_sndudata (int fd, struct t_unitdata* udata );

The ¢_snd function sends a message of len bytes (contained in buf) to another process
that is connected via the transport end point designated by fd. The transport end point must be
a virtual circuit and has been connected to another end point via a 1_connect (for a client pro-
cess) or a t_accept (for a server process) call.

The flags value may be zero, which is the default, or it may be set with one or more of
the following values, which are defined in the <tiuser.h> header:

flags value Use

T_EXPEDITED Tags the message as an urgent message. This is like
the MSG_OOB flag in sockets. Note that the trans-
port provider may or may not support this option.
If it does not support this, the function fails, and
the ¢_errno will be set to TNOTSUPPORT

T_MORE Tells the recipient process that the message sent via
the next 7_snd call is a continuing message of the
current message

The function returns a -1 if it fails or the number of characters in buf that were success-
fully sent. Note that if fd is specified to be nonblocking, the function returns immediately if
the message in buf cannot be delivered to the recipient right away. The function return value
is -1, and the t_ermo is set to TFLOW.

The ¢_sndudata is used to send datagram messages via a connectionless transport end
point. The struct ¢_unitdata is declared as:

struct t_unitdata

{
struct netbuf  addr;
struct netbuf  opt;
struct netbuf  udata;
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where udata contains the message to be sent to a peer transport end point and whose
address is specified in addr. The opt value is any transport-specific options to be used in this
message delivery.

Note that there are no flags values that can be set in a ¢_sndudata call to specify that the
~ message sent is a T_EXPEDITED message.

The function returns a -1 if it fails or a 0 if it succeeds. Note that if fd is specified to be
nonblocking, the function returns immediately if the message specified in udata cannot be
delivered to the recipient right away. In this case, the function return value is -1, and the
t_errno is set to TFLOW.

The following example sends an urgent message (MSG1) to a connected transport end
point:

char* MSG1 = “Hello World";
it (t_snd( MSG1, strlen(MSG1)+1,T_EXPEDITED) < 0) t_error(“t_snd");

The following example sends a datagram message (MSG1) to the peer transport end
point whose address is 3 (a local connection):

char* MSG1 = “Hello World”;
struct t_unitdata *t_ud =
(struct t_unitdata®)t_alloc(fd, T_UNITDATA,T_ALL);

if (t_ud) {
t_error(“t_alloc for T_UNITDATA fails”);
exit(1);
}
t_ud->addr.len = sizeof(int); // set recipient transport address

*(int*)t_ud->addr.buf = 3;

t_ud->udata.len = strlen(MSG1) + 1; // set the message to be sent
t_ud->udata.buf = MSG1;

if (t_sndudata(fd, t_ud) < 0) t_error(“t_sndudata”);

11.4.8 t_rcv, t_rcvudata, t_rcvuderr

The function prototypes of ¢_rcv, t_rcvudata and't_rcvuderr APIs are:
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#include <tiuser.h>
int t_rcv (int fd, char* buf, unsigned len, int* flags);
int t_rcvudata ( int fd, struct t_unitdata* udata, int* flags);

int t_rcvuderr (int fd, struct t_uderr* uderr );

The t_rcv function receives a message that is put into buf by another process that is con-
nected to the transport end point as designated by fd. The transport end point must be a virtual
circuit and has been connected to another end point via a r_connect (for a client process) or a
t_accept (for a server process) call.

The len value specifies the maximum size of the buf argument. The flags value is an
address of an integer-typed variable. This variable holds the flags value that is sent along with
the message via the 7_snd function call. The possible values that may be returned in flags are
0, T_MORE, and/or T_EXPEDITED. These values are descnbed in the last section.

s

The ¢_rcv function returns -1 if it fails or the number of data bytes that were put into
buf. Note that if fd is specified to be nonblocking, the function returns immediately if no mes-
sage can be received right away. In this case, the function return value is -1 and the ¢_ermo is
set to TNODATA.

The ¢_rcvudata is used to receive datagram messages via a connectionless transport end
point. The udata value is an address of a struct unitdata typed variable and holds the data-
gram message received, as well as the sender’s address.

The flags value is an address of an integer-typed variable. This variable is normally
assigned a return value of 0. However, if the receiving buffer udata->udata.buf is too small to
receive the entire incoming message, the returned flags value is set to T_MORE and the ker-
nel copies only enough message text to fill up the udata->udata.buf buffer. The process
should call ¢_rcvudata again to receive the rest of the message.

The ¢_rcvudata function returns -1 if it fails or 0 if it succeeds. Note that if fd is speci-
fied to be nonblocking, the function returns immediately if no message can be received right
away. The function return value is -1, and the ¢_ermo is set to TNODATA.

The t_rcvuderr is used to receive error diagnostics associated with a datagram message.
This should be called only if a ¢_rcvudata call returns a failure status. The struct t_uderr is
declared as:
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struct t_uderr

{
struct netbuf  addr;
struct netbuf  opt;
long error,;

|5

where addr contains the destination transport address of the erroneous message, opt
contains any transport-specific parameters to be used with the message delivery and error
contains an error code.

The uderr value may be specified as NULL, which means no error diagnostic is wanted
and the function simply clears the internal error status flag.

The t_rcvuderr function return -1 if it fails, or 0 if it succeeds.

The following example receives a message from a connected transport end point:
int flags;
char  buf(80];
if (t_rcv( fd, buf, sizeof buf, &flags ) < 0) t_error(“t_rcv");

The following example receives a datagram message from a peer transport end point
and prints an error diagnostic if the 1_rcvudata call fails:

struct t_unitdata *t_ud =
(struct t_unitdata*)t_alloc(fd, T_UNITDATA,T_ALL);

if (1t_ud) {
t_error(“t_alloc for T_UNITDATA fails”); .
exit(1);
}
int flags;
char * buf{80);
t_ud->udata.len = sizeof (buf); // setup a buffer to receive msg

t_ud->udata.buf = buf;

if (t_rcvudata(fd, t_ud, &flags)< 0) { // receive a datagram message
if (t_errno==TLOOK) {
struct t_uderr *uderr=
(struct t_uderr*)t_alloc(fd, T_UDERROR, T_ALL);
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if (‘uderr) {
t_error(“t_alloc for T_UDERROR fails™y,
exit(2);

}

if (t_rcvuderr(fd, uderr) < 0) // get error code
t_error(“t_uderr”);
else cerr << “Error code is: << uderr->error << endl;
t_free(uderr, T_UDERROR);  //free error data record
}
else t_error(“t_rcvudata”);
} else cout << “receive msg: ” << buf << “\n";

1149 t_sndrel , t_rcvrel

The function prototypes of ¢_sndrel and t_rcvrel APIs are:

’#include <tiuser.h>

int t_sndrel (int fd ),
int t_rcvrel (int fd ),

The t_sndrel function sends an orderly connection release request to the underlying
transport provider. The process cannot send any further messages to the transport end point
designated by fd, but it can continue to receive messages via fd until an orderly connection
release indication is received.

The t_sndrel function returns -1 if it fails, 0 if it succeeds. If fd is set to be nonblocking
and the orderly release request cannot be sent to the underlying transport provider immedi-
ately, the function returns a -1 value, and t_ermo is set to TFLOW.

The t_rcvrel acknowledges the receipt of an orderly connection release indication.
After this function is called, the process should not attempt to receive more messages via the
transport end point designated by fd.

The t_rcvrel function returns -1 if it fails, O if it succeeds.

Note that not all transport providers support the t_sndrel and t_rcvrel functions. If a
transport provider does not support these functions and they are called, they return a -1 value,
and ¢_ermo is set to TNOTSUPPORT. ‘
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The following example sends an orderly release request to a connected transport end
point and waits for acknowledgment of the connection release indication:

if (sndrel(fd) < 0)
t_error(“sndrel”);
else if (t_rcvrel(fd) < 0) t_error(“rcvrel”);

11.4.10 t_snddis, t_rcvdis

The function prototypes of ¢_snddis ana t_rcvdis APIs are:

#include <tiuser.h>

int t_snddis ( int fd, struct t_call* call );
int t_revdis (int fd, struct t_discon* conn );

The ¢_snddis function is used to abort an established transport connection or to reject a
connection request by a client. When t_snddis is used to reject a connection request, the call-
>sequence field specifies which connection request to reject. When ¢_snddis is used to ini-
tiate an abortive release of a transport connection, call value may be NULL,; otherwise, only
the call->udata field is used. This field contains user data sent to the connected transport end
point along with the abortive release indication.

The 1_snddis function returns -1 if it fails, 0 if it succeeds.

The 1_rcvdis function is used to retrieve an abortive release indication and any user data
sent along with the indication. The conn value may be NULL if the process does not care
about the user data or the reason for the abortive release. Otherwise, the conn value is the
address of a struct t_discon typed variable. The struct t_discon is declared as:

struct t_discon
{
struct netbuf  udata;
int reason;
int sequencs;
b

The conn->udata contains any user data thar are sent via a t_snddis call. The conn-
>reason contains a transport-specific reason code for the disconnection. The conn->sequence
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is meaningful only in a server process that has performed multiple ¢_listen calls and is used to
determine which client process has initiated a ¢_connect and, finally, a t_snddis function call.

The t_rcvdis function returns -1 if it fails, O if it succeeds.

The following example sends an abortive release request to a connected transport end
point:

if (t_snddis(fd) < 0) t_error(“t_snddis”);

The following example uses _rcvdis to obtain a reason code for a rejection of a con-
nection request:

if (t_connect(fd, call, call) < 0 && t_errno==TLOOK)
if (t_Iook((fd)::T_DISCONNECT) {
struct t_discon *conn = (struct t_discon*)t_alloc(fd,T_DIS,T_ALL);
if ({conn)
t_error(“t_alloc for T_DIS fails”);
else if (t_rcvdis(fd,conn) < 0)
t_error(“t_rcvdis”);
else cout << “Disconnect reason code: “ << conn->reason << end!;

} _ '

11,4.11 t_close

The function prototype of ¢_close APIs is:

#include <tiuser.h>

int t_close (int fd);

The ¢_close function causes the transport provider to free all system resources that are
allocated for the transport end point as designated by fd, and closes the device file associated
with the transport provider. This should be called after the transport end point connection has
been terminated via either the ¢_sndrel or the t_snddis call.

The t_close function returns a -1 if it fails or a O if it succeeds.
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The following example closes a transport end point:

if (1_close(fd) < 0) t_error(“t_close”);

11.5 TLIClass

This section depicts the TLI class which performs functions similar to those in the sock
class (see Section 11.2). Specifically, the TLI class encapsulates all low-level TLI system call
interfaces and takes care of the dynamic memory management of the TLI-specific data struc-
ture (e.g., struct t_call, struct t_bind, etc.). These reduce the learning and programming time
of users who wish to use TLI for IPC. Furthermore, the TLI class fosters maximum code
reuse among all applications.

The TLI class is defined in the #/i.h header as:

#itndef TLI_H
#define TLI_H

/* TLI class definition */

#include <iostream.h>

#include <unistd.h>

#include <string.h>

#include <tiuser.h>

#include <stropts.h>

#include <fontl.h>

#include <stdio.h>

#include <stdiib.h>

#include <signal.h>

#include <netdir.h>

#include <netconfig.h>

#define UDP_TRANS “/deviticlts”
#define TCP_TRANS “/dev/ticotsord”
#define DISCONNECT -1

class tli
{
private:

int tid; // transport descriptor
int local_addr; // transport address for local IPC
struct nd_addrlist *addr; // transport address for Internet IPC
struct netconfig  *nconf; // transport provider device-file
int rc; // TLI functions return status code

/* Allocate a structure to send a datagram message to an
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end point in internet */

struct t_unitdata* alloc_ud ( int nsid, char* service, char* host )

{

k

struct t_unitdata* ud=(struct t_unitdata*)t_alloc(
nsid==-1 ? tid : nsid, T_UNITDATA, T_ALL);
if (fud) {
t_error(“t_alloc of t_unitdata”);
return O;

}

struct nd_hostserv  hostserv;

struct netconfig *ncf;
struct nd_addrlist *Addr;
void *hp;

if (hp=setnetpath()) ==0)  {
perror(“Can’t init network”);
return O;
}
hostserv.h_host = host;
hostserv.h_serv = service,;
while ((ncf=getnetpath(hp)) != 0)
if (ncf->nc_semantics == NC_TPI_CLTS
&& netdir_getbyname(ncf, &hostserv, &Addr)==0)
break;
endnetpath(hp);
if (Incf) {
cerr << “Can’t find transport for “ << service << “\n”;
return O;

}
ud->addr = *(Addr->n_addrs);.
return ud;

/* Allocate a structure to send a datagram message to an end point */
struct t_unitdata* alloc_ud ( int nsid, int port_no )

{

|5

struct t_unitdata* ud=(struct t_unitdata*)t_alloc(

nsid==-1 7 tid : nsid, (T_UNITDATA), (T_ALL));

if (lud) {
t_error(“t_alloc of t_unitdata”);
return O;

ud->addr.len = sizeof(int);
*(int*)ud->addr.buf = port_no;
return ud;
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I* Report a datagram message receive error */
void report_uderr( int nsid )

if ((t_errno) == (TLOOK))
{

struct t_uderr *uderr;
if ((uderr=(struct t_uderr*)t_alloc(nsid==-1 ? tid : nsid,
T_UDERROR,T_ALL))==0) {
t_error(“t_alloc of t_uderr”);
return;

if ((re=t_rcvuderr(nsid==-1 ? tid : nsid, uderr)) < 0)
t_error("t_rcvuderr”);

else cerr << “bad datagram. error=" << uderr->error << endl;

t_free((char*)uderr,T_UDERROR); Y

else t_error(“t_rcvudata”);

5

public:

/* Constructor to create a transport end point for local IPC */
tli( int srv_addr, int connless =0 )

{
local_addr = srv_addr;
nconf = 0;
addr =0; v

if ((tid=t_open(connless ? UDP_TRANS : TCP_TRANS,
O_RDWR, 0)) < 0)
t_error(“t_open fails”);
2

/* Constructor to create a transport end point for Internet IPC */
tli( char* hostname, char* service, int connless=0 )
{
struct nd_hostserv hostserv;
void *hp;
int type = connless ? NC_TPI_CLTS : NC_TPI_COTS_ORD;
local_addr = 0;
// find the transport provider for the specified host/service
if (hp=setnetpath()) ==0) {
perror(“*Can't init network”);
exit(1);
} ,
hostserv.h’ host = hostname;
hostserv.h_serv = service;
while ((nconf=getnetpath(hp)) != 0)
if (nconf->nc_semantics == type
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&& netdir_getbyname(nconf, &hostserv, &addr)==0)
break;
endnetpath(hp);
if (nconf ==0)
cerr << “No transport found for service: ” << service << “\n”;
else if ((tid=t_open(nconf->nc_device, O_RDWR, 0)) < 0)
t_error(“t_open fails”); -
|3

/* Destructor function */
~tli() { shutdown(); close(tid); };

/* Check constructor success status */
int good() {returntid>=0; };

/* Let the transport provider to bind a name to an end point */
int Bind_anonymous( ) { return t_bind(tid, 0, 0); };

_ I* Bind a name to a transport end point */

int Bind()
{
struct t_bind *bind;
if ((bind= (struct t_bind*)t_alloc(tid, T_BIND, T_ALL))==0)
t_error(“t_alloc for t_bind”);

return -1;
)
bind->qlen = 1; // max no of pending connect request
if (nconf) { // Internet address

bind->addr = *(addr->n_addrs);

}

else { // Local address
ind->addr.len = sizeof(int);
*(int*)bind->addr.buf = local_addr;

}
it ((rc = t_bind(tid, bind, bind)) < 0)
t_error(“t_bind");
eise // echo the actually bound address
cerr << “server: t_bind: “ << (*(int*)bind->addr.buf) << end|;
return rc;
1
/* Wait for a connect request from a client transport end point */
int listen ( struct t_call*& call )

if (tcall && (call = (struct t_call*)t_alloc(tid, T_CALL, T_ALL))==0)
t_error(“t_alloc”);
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return -1;
}
if ((re=t_listen(tid,call)) < 0) t_error(“t_listen”);
return rc; _

|3

/* Accept a connect request from a client transport end point */
int accept ( struct t_call * call )
{ .
I* create a new end point to communicate with client */
int resfd;
if (nconf) // Internet IPC
resfd = t_open( nconf->nc_device, O_RDWR, 0);
else // Local IPC, must be connection-based
resfd = t_open(TCP_TRANS, O_RDWR, 0);
if (resfd <0) {
t_error(“t_open for resfd”);
return -1;
}
// Bind an arbitrary name to the new end point
if (t_bind(resfd,0,0) < 0) {
t_error(“t_bind for resfd”);
return -2;
}
// Connect the new end point to the client
if (t_accept(tid, resfd, call) < 0) {
if (t_errno ==TLOOK) {
if (t_revdis(tid, 0) < 0) {
t_error(“t_rcvdis”);
return -4,

} )

if (t_close(resfd) <0) {
t_error(“t_close”);
return -5;

}
return DISCONNECT;
}

t_error(*t_acept”);
return -6;
}

return resfd;

k

/* Initiate a connect request to a server’s transport end point */
int connect()

{
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struct t_call *call;

if ((call = (struct t_call*)t_alloc(tid, T_CALL, T ALL))-—O) {
t_error(“t_alloc”);
return -1;

if (nconf)
call->addr = *(addr->n_addrs);
else {
call->addr.len = sizeof(int);
*(int*)call->addr.buf = local_addr;
}
cerr << “client: connect to addr=" << (*(int*)call->addr.buf) << end};
if ((rc=t_connect(tid,cali,0)) <0)  {
t_error(“client: t_connect’); return -2;
}

return rc;

|3

/* Write a message to a connected remote transport end-pount */
int write( char* buf, int len, int nsid=-1)

if ((rc=t_snd(nsid==-1 ? tid : nsid, buf, len, 0)) < 0) t_error("t_: snd");
return rc;

5

/* Read a message from a connected remote transport end-pount */
int read( char* buf, int len, int& flags, int nsid=-1)

if ((re=t_rcv(nsid==-1 ? tid : nsid, but, len, &flags)) < 0)
t_error(“t_snd”);
return rc;

b

/* Write a datagram message to a remote end point in the Internet */
int writeto({ char* buf, int len, int flag, char* service, char* host,

int nsid=-1)
{

struct t_unitdata® ud = alloc_ud(nsid,service,host);

ud->udata.len = len;

ud->udata.buf = buf;

if ((re=t_sndudata(nsid==-1 ? tid : nsid, ud)) < 0)
t_error(“t_sndudata”);

t_free(ud); return rc;

|5
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/* Write a datagram message to a remote end point on the
same machine */
int writeto( char* buf, int len, int flag, int port_no, int nsid=-1)
{
struct t_unitdata* ud = alloc_ud(nsid,port_no);
ud->udata.len = len;
ud->udata.buf = buf;
if ((rc=t_sndudata(nsid==-1 ? tid : nsid, ud)) < 0)
t_error(“t_sndudata”);
t_free(ud); return rc;

L

/* Write a datagram msg to a end point whose address is specified
inud */
int writeto( char* buf, int len, int flag, struct t_unitdata* ud, int nsid=-1 )
{
ud->udata.len = len;
ud->udata.buf = buf;
if ((rc=t_sndudata(nsid==-1 ? tid : nsid, ud)) < 0)
t_error(“t_sndudata”);
return rc;

b

/* Receive a datagram message from a remote end point */

int readfrom( char* buf, int len, int& flags, struct t_unitdata*& ud,
o int nsid =-1)

{

if (fud && (ud=(struct t_unitdata*)t_alioc(nsid==-1 ? tid : nsid,
T_UNITDATA, T_ALL))==0) {
t_error(“t_alloc of t_unitdata”);
return -1;

ud->udata.len = len;

ud->udata.buf = buf; '

if ((re=t_rcvudata(nsid==-1 ? tid : nsid, ud, &flags)) < 0)
report_uderr(nsid);

return rc;

|5

/* Shutdown a transport connection using abortive release notification */
int shutdown( int nsid = -1)

{
return i_snddis( nsid==-1 ? tid : nsid, 0 );
|3
, /tclassTLI*/
#endif
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The public member functions of the TLI class are on an almost one-to-one correspon-
dence with those of the sock class. This is a reflection of the one-to-one correspondence of
the TLI APIs and the socket APIs.

The major difference between the TLI class and the sock class is the naming convention
assigned to each type of object. Specifically, a sock object name may be a UNIX path name
(for UNIX domain socket) or a host name and a port name (for an Internet domain socket). A
TLI object name may be an integer number (for local transport communication) or a host
name and a service name (for Internet transport communication).

Another difference between the TLI class and the sock class is the listen function..
Whereas the sock::listen sets only the maximum number of pending connection requests
allowed for a sock object, the TLI::listen function actually waits for a client connection
request to arrive. In fact, the sock::accept function actually combines the operation of the
TLI::listen and TLI::accept functions.

The above TLI class does not support nonblocking operations, but it could easily be
modified by users to support nonblocking operations. The following two sections depict two
sample IPC applications that make use of the TLI class.

11.6  Client/Server Message Example

The first example that makes use of the TLI class is the client/server message passing
example, as shown in Section 10.3.7. This new version uses connection-based transport end
points to set up a communication channel between the message server and its client pro-
cesses. Furthermore, because the server is connected directly to each client process, each
message sent from a client consists of a service command (e.g., LOCAL_TIME,
UTC_TIME, or QUIT_CMD, etc.) encoded in a character string. The server sends the service
response to its client in a character string format also.

The message server program, tli_msg_srv.C, is shown below:

#include “tli.h”

#include <sys/times.h>

#include <sys/types.h>

#define MSG1 “Invalid cmd to message server’

typedef enum { LOCAL_TIME, GMT_TIME, QUIT_CMD,
ILLEGAL_CMD } CMDS;

/* create a child process to handle a client's commands */
void process_cmd (tli* sp, int fd )

char  buf[80];
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time_t tim;
char* cptr;
int  flags;

switch (fork()) {
case -1: perror(“fork”); return;
case 0: break;
‘default:  return; // parent
}
/* read commands from a client until EOF or QUIT_CMD ¥/
while (sp->read(buf, sizeof buf, flags, fd)y>0) {
cerr << “server: read cmd: << buf << “\n";
int  cmd = ILLEGAL_CMD;
(void)sscanf(buf,"%d",&cmd);
switch (cmd) {
case LOCAL_TIME:
tim = time(0);
cptr = ctime(&tim);
sp->write(cptr, strien(cptr)+1, fd);
break;
case GMT_TIME:
tim = time(0);
cptr = asctime(gmtime(&tim));
sp->write(cptr, strien(cptr)+1, fd);
break;
case QUIT_CMD:
sp->shutdown(fd); /I shutdown the connection
exit(0);
default:
sp->write(MSG1, sizeof MSG1, fd);
}

}
exit(0);

int main( int argc, char* argv(])

char buf{80), socknm[80);
int port=-1, nsid, rc;
fd_set select_set;

struct timeval timeRec;

if (argc < 2) {
cerr << “usage: “ << argv[0] << “ <serviceino> <host>\n";
return 1;

}

/* check if integer address no. or a service name is specified */
(void)sscanf(argv[1]%d" &port);
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* create a connection-based transport end point */
ti “sp;
if (port==-1)
sp = new tli{ argv{2], argv{1] );
else sp = new ti (port);

if (Isp 1l !sp->good()) {
cerr << “server: create transport endpoint object fails\n”;
return 1; '

}

/* Bind a name to the server's transport end point */
it (sp->Bind() < 0) { .

cerr << “server: bind fails\n”;

return 2;

}

for (struct t_call *call=0; sp->listen(call)==0; ) {
/* accept a connection request from a client socket */
if ((nsid = sp->accept(call)) <0) |
cerr << “server: accept fails\n”;
return 3;

}

cerr << “server: got one client connection. nsid=" << nsid << “An”;

/* create a child process to process commands */
process_cmd(sp,nsid);

close(nsid); /* re-cycle file descriptor */
}

return sp->shutdown();

}

The server program is invoked with either an integer address for local transport connec-
tion or a service and host name for Internet transport communication. The server begins exe-
cution by creating a transport end point and binds its name to it. It then enters a loop, where it
listens for a connection request from client processes via the tli::listen function.

For each connection request received, the server calls the tli::accept function to con-
nect with the client transport end point. The #li::accept function also returns a new transport
descriptor (nsid) for the server to communicate exclusively with the connected client. The
server calls the process_cmd function to process a connected client. The process_cmd func-
tio, in turn, forks a child process to deal with the client. It returns immediately to the server
process, so that the server can continue to monitor other connect requests.
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Each child process created in the process_cmd function calls the 1li::read function to
read each command from a connected client and then replies via the tli: :write function. If the
client sends the QUIT_CMD to the child process, the child process destroys the connection
via the tli::shutdown call and terminates itself.

The client program that communicates with the server program via TLI class objects is

tli_msg_cls.C:

#include “tli.h”
#define QUIT_CMD 2

int main( int arge, char* argv{])

{
if (argc < 2) {
cerr << “usage: “ << argv[0] << “ <servicelno> <host>\n";
return 1;
}
char buf{80];

int port=-1, rc, flags;

* check if an integer address or a service name is spceified */
(void)sscanf(argv[1],"%d",&port);

tli *sp; // create a transport end point
if (port==-1)

sp = new tii( argv{2), argv{1] ); // Internet transport
else sp = new tli (port); // local transport

if (Isp Il Isp->good()) {
cerr << “client: create transport endpoint object fails\n”;
return 1;

}

/* bind an arbitrary name to the transport end point */
if (sp->Bind_anonymous() < 0) {

cerr << “client: bind fails\n”;

return 2;

}

* connect to a server transport end point */
if (sp->connect() < 0) {

cerr << “clierit: connect fails\n";

return 3;

}
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[* Send cmds 0 -> 2 to server */

for (int cmd=0; cmd < 3; cmd++) {
/* compose a command to server */
sprintf(buf,"%d”,cmd);
if (sp->write(buf,strlen(buf)+1) < 0) return 4,

/* exit the loop if QUIT_CMD */
if (cmd==QUIT_CMD) break;

/* read reply from server */
if (sp->read(buf,sizeof buf, flags) < 0) return 5;
cout << “client: recv ” << buf << “\n”;

}

/* shutdown the transport connection */
return sp->shutdown();

} /* main */

The client program is invoked with a server address, which may be an integer address
for local transport connection or a service and host name for Internet transport communica-
tion. The client begins execution by creating a transport end point and binds an anonymous
name to it. A client does not need to have a well-defined name assigned to it because no other
process initiates connection requests to the client process by address.

Once a transport end point is defined, the client calls the ti::connect function to estab-
lish a virtual circuit connection with the server transport end point. If this is accomplished
successfully, the client sends a series of commands to the server via the tli::write function
calls. The commands sent by the client, in their sending order, are LOCAL_TIME,
UTC_TIME, and the QUIT_CMD. For each command sent (except the QUIT_CMD), the cli-
ent waits for the server reply via the tli::read function and prints the server reply message to
the standard output.

After the client sends the QUIT_CMD to the server, it shuts down the transport connect
via the tli::shutdown function, then terminates itself.

The sample output of the client/server program execution is:

% CC -o tli_msg_srv ti_msg_srv.C -Insl
% CC -o tli_msg_cls tli_msg_cls.C -Insl
% tli_msg_srv 2 &

[1] 781

server: t_bind: 2

% tli_msg_cls 2
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client: connect to addr=2

server: got one client connection. nsid=4
server: read cmd: ‘0’

client: recv ‘Fri Feb 17 22:34:50 1995’
server: read cmd: ‘1’

client: recv ‘Sat Feb 18 06:34:50 1995’
server: read cmd: ‘2’

[1] + Done tli_msg_srv 2

%

The same two programs can also be run unmodified but using an Internet transport con-
nection instead. To enable this feature, a new entry, as shown below, is added to the /etc/ser-
vices file:

test 4045/tcp

This new entry defines a new service call rest which uses TCP as the transport provider,
with the assigned port number of 4045. The following screen log shows the new run of the
same client/server program, but here, the server transport address is fruit (host name) and test
(service name):

% hostname

fruit

% tli_msg_srv test fruit &

(11776

server: t_bind: 135122

% tli_msg_cls test fruit

client: connect to addr=135122

server: got one client connection. nsid=4
server: read cmd: ‘0’

client: recv ‘Fri Feb 17 22:34:04 1995’
server: read cmd: ‘1’

client: recv ‘Sat Feb 18 06:34:04 1995’
server: read cmd: ‘2’

[1] + Done tli_msg_srv test fruit

11.7 Datagram Example

The second example shows two peer processes communicating via two datagram trans-
port end points. These transport end points are created via the TLI class also. The two peer
processes are tli_cltsl and tli_clts2, as created from the tli_clts].C and tli_clts2.C files,
respectively.

428



Chap. 11.

The tli_clts1.c program is:

#include <sys/systeminfo.h>
#inciude “tli.h"
#define MSG1 “Hello MSG1 from clts1”

/* get a host name */
int gethost( int argc, char* argvi], char host(], int len)

if (argc!=3) {
if (sysinfo(SI_HOSTNAME ,host,len)<0)  {
perror(“sysinfo”);
return -1;

}
} else strcpy(host,argv(2]);
return O;

}
int main( int argc, char* argvi])

char buf[80}, host{80];
int port=-1, rc, flags=0,

if (argc < 2) {

Datagram Example

cerr << “usage: “ << argv[0] << “ <servicelport_no> [<hostname>]\n";

return 1;

}

* check if port no. of a socket name is specified */

(void)sscanf(argv(1],"%d",&port),
/* Create a transport end point */
ti *sp;

if (port==-1)  {

if (gethost(argc, argv, host, sizeof host) < 0) return 2;

sp = new tli( host, argv{1], 1);
} else sp = new ti (port, 1);

if ('sp Il Isp->good())  {

cerr << “clts1: create transport endpoint object fails\n”;

return 3;

}

/* Bind a name to the transport end point */
if (sp->Bind() <0)  {
cerr << “clts1: bind fails\n”;
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return 4.

}

struct t_unitdata *ud = 0;

if (sp->readfrom( buf, sizeof buf, flags, ud) < 0) K|
cerr << “clts1: readfrom fails\n”;
return 5;

}

cerr << “clits1: read msg: ™ << buf << “\n";

if (sp->writeto(MSG1, strlen(MSG1)+1, flags, ud) <0)  {
cerr << “cits1: writeto fails\n™;
return 6;

}

if (sp->readfrom(buf, sizeof buf, flags, ud) <0) {
cerr << “clts: readfrom fails\n”;
return 7;

}

cerr << “cits1: read msg: " << buf << “\n”;

return O;

}

The dli_clts] program may be invoked with a single integer address (for local transport
comsmunication) or a service name, followed by an optional host name (for Internet transport
communication). If a service name is specified, the name must also be defined in the /etc/ser-
vices file. If a host name is not specified with a service name, the host name of the machine
on which the program is run is assumed.

The #li_clts] begins execution by creating a TLI object (a transport end point) based on
the given command line arguments. If an Internet transport end point is to be created, the
gethost function is called to retrieve the local host machine name from either the command
line argument (if it is specified) or via the sysinfo function call.

After a TLI transport object is created, the process binds a name to the transport object,
then reads a message (MSG2) to be sent by the rli_clts2 process. Once the MSG2 message is
received, the process prints that message to the standard output. It then writes a MSG1 mes-
sage back to the tli_clts2 process via the transport address contamod in the ud variable. The
ud variable is assigned by the readfrom call.

Finally, the process waits for the li_clts2 to send the last MSG3 message. Once that is
received, the process prints that message to the standard output and terminates itself. The
transport end point created by the process is discarded via the TLI::~TLI destructor function.

The tli_clts2.c program that communicates with the #li_cits! program is:
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#include <sys/systeminfo.h>

#include “tli.h”

#define MSG2 “Hello MSG2 from cits2”
#define MSG3 “Hello MSG3 from clts2”

/* get a host name */
int gethost( int argc, char* argv(], char hostf], int ien)

}

if (argci=4) {
if (sysinfo(SI_HOSTNAME hostlen)< 0)  {
perror(“sysinfo”); return -1;
}
} else strcpy(host,argv(3]);
return O;

int main( int argc, char* argv(])

{

char buf{80}, host[80];
int port=-1, clts1_port=-1, rc, flags=0;

if (argc < 2) {
cerr << “usage: “ << argv[0] <<
“ <servicelport_no> <clts1_servicelno> [<host>]\n";
return 1,

}

/* check if port no. of a socket name is specified */
(void)sscanf(argvi1],"%d" &port);
(void)sscanf(argv(2],"%d", &clts1_port);

/* create a transport end point */

ti *sp;

if (port==-1) { // Internet transport
if (gethost(argc, argv, host, sizeof host) < 0) return 2;
sp = new tii( host, argv[1], 1);

} else sp = new tli (port, 1); // local transport

if (sp 1l Isp->good()) {
cerr << “clts2: create transport endpoint object fails\n”;
return 2;

}

/* Bind a name to the transport end point */

if (sp->Bind() <0)  {

cerr << “cits2: bind fails\n”;
return 3;

}
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/* write MSG2 to the tli_clts1 process */
if (port==-1)

rc = sp->writeto(MSG2,strlen(MSG2)+1, 0, argv(2], host);
else rc = sp->writeto(MSG2, strlen(MSG2)+1, 0, cits1 _port);
if(rc<0) {

cerr << “clts2: writeto fails\n”;

return 4;

}

/* read MSG1 from the tli_cits1 process */

struct t_unitdata *ud = 0;

if (sp->readfrom(buf, sizeof buf, fiags, ud) < 0) {
cerr << “clts2: readfrom fails\n”;
return 5;

}

cerr << “clts2: read msg: " << buf << “\n”;

/* write MSG3 to the tli_clts1 process */

if (sp->writeto(MSG3, strlen(MSG3)+1, flags, ud) < 0) {
cerr << “clts2: writeto fails\n”;
return 6;

}

return O,

}

The tli_clts2 program is very similar to the tli_clts] program. The difference is that it is
invoked with either: (1) an assigned integer address and the integer address of the tli_clts]
process (for local transport communication); or (2) its service name alone with that of
tli_clts1, optionally followed by a machine host name (for Internet transport communication).
If a service name is specified, the name must be defined in the letc/services file. If-a host
name is not specified with the service name, the host name is assumed.

The tli_clts2 begins execution by creating a TLI object, based on the given command
line arguments. If an Internet transport end point is created, the gethost function is called to
retrieve the host machine name from either the command line argument (if it is specified) or
via the sysinfo function call.

-After a TLI transport object is created, the process binds a name to the transport object,
then writes the MSG2 message (MSG2) to the tli_clts] process. Once the MSG2 message is
sent, the process waits for the #li_cls] process to send it the MSG1 message. The process
prints the MSG1 message to the standard output once it has been received.

Finally, the process writes the MSG3 message to the #li_clts] process before it termi-
nates itself. The transport end point created by the process is discarded via the TLI::~TLI
destructor function.
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The following conso’e log depicts the interaction of the tli_clts] and tli_clts2 pro-
cesses. The transport end points created here are based on integer addresses. The ti_cltsI’s
transport is assigned the integer address of 1, while that of the tli_cits2 process is the address
2

% CC -o tli_cits1 tli_clts1.C -Insl

% CC -o tli_clts2 tli_cits2.C -Insl

% thi_clts1 1 &

bind: 1

% tli_clts2 2 1

bind: 2

cits1: read msg: ‘Hello MSG2 from clts2’
clts2: read msg: ‘Hello MSG1 from citst’
clts1: read msg: ‘Hello MSG3 from clts2’
{11 + Done tli_clts1 1

To run the same programs again using host name/service names, the following two
entries are added to the /etc/services file:

utst1 4046/udp
utst2 4047/udp

The utst” is the service name assigned to the #li_clts] transport. The utst2 is the service
name for the tli_clts2 transport. Both services use the UDP transport provider, which pro-
vides connectionless communication.

The following console log depicts the interactiop of the same tli_clts] and tli_clts2 pro-
cesses, using Internet transport end points:

% tli_clts1 utst1 &

bind: 135123

% tli_cits2 utst2 utst1

bind: 135124

clts1: read msg: ‘Hello-MSG2 from cits2’
clts2: read msg: ‘Hello MSG1 from clts1’
clts1: read msg: ‘Hello MSG3 from clts2’
[1] + Done tli_cits1 utst1

Note that the output of the above session is identical to that of using local transport end
points. No recompilation of the tli_clts1.C and tli_clts2.C programs is needed. The same two
programs can also be run on different machines that are connected via an LAN. For example,
suppose the ti_clts] program is run on a machine called fruit and the tli_clts2 program is run
on apple. The invocation syntax of the two programs is:
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Run the #li_clts] program on the machine Sruit:

fruit % tli_cits1 utst1 &
[1425])

Run the 1li_clts2 program on the machine apple:

apple % tli_cits2 utst2 utst1 fruit

Once the two programs are connected, the tli_clts] output messages are displayed on
the machine fruit, while the tli_clts2 messages are displayed on the machine apple.

11.8 Summary

This chapter examines BSD UNIX sockets and UNIX System V.3 and V.4 Transport
Level Interface for interprocess communication. Sockets and TLI are better methods than are
messages, shared memory, or semaphores, in that both sockets and TLI allow processes run-
ning on different machines to communicate. This is important for any serious client/server
application, where a server is usually run on a power computer and client processes are run
on end-user desktop computers.

The syntax of the sockets and TLI APIs are explained in detail in this chapter, as well
as sample programs that illustrate their use. Furthermore, a sock class and a tli class are
defined to encapsulate the API interface so as to reduce the learning and programming time
of users who wish to use these constructs to create IPC applications.

Of the two IPC methods, TLI is more flexible than are sockets, in that it supports
almost all transport protocols. Sockets support only a limited number of transport protocols
for each socket type (this is controlled by hardware vendors who implement sockets on their
computer systems). Also, TLI-has more elaborate methods for transport-specific memory
management (the _alloc and ¢_free functions), transport error reporting (¢_error, t_rcvuderr,
and ¢_look), and connection release (tli_snddis, tli_rcvdis, tli_sndrel and tli_rcvrel). Thus,
TLI allows users to create more sophisticated IPC applications.

However, TLI is available only in UNIX System V.3 and V.4, whereas sockets are avail-
able on all the latest UNIX systems (BSD 4.2,4.3, 4.4, and UNIX System V.4). Furthermore,
there is already a large volume of IPC applications existing today using sockets. Thus, if port-
ability and interaction with existing socket-based applications are a concern to application
developers, they should consider using sockets over TLL
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Remote Procedure Calls

Remotc procedure call (RPC) is a mechanism by which a process on one machine
invokes another process on either the same or a remote machine to execute a function on its
behalf. It is like calling a local function in that the process makes a function call and passes
data to the function, then waits for the function to return. What is special here is that the func-
tion will be executed by a different process. The RPC process interaction is invariably in a
client/server manner, such that the process making an RPC call is a client process, and the
process that executes an RPC function in response is a server process. A server process pro-
vides one or more service functions that can be invoked by its clients.

Remote procedure call is used in network-based applications to tap network resources
on different machines. For example, in a distributed database system, the server process is a
database management process, and it manages the data retrieval and storage of the database
files. The client processes are the database front-end programs that allow users to input data
inquiry and update commands. These user-issued commands are converted by the client pro-
cesses into RPC calls to the server process. The return values of the RPC calls are depicted to
the user by the client processes.

Another example of an RPC application is when a server process is running on a high-
powered machine and the client processes are running on less powerful machines. Whenever
a client process needs to do compute-intensive jobs, it uses RPC to direct the server to exe-
cute those jobs on the server machine. This balances the workloads of the two machines and
also maintains an acceptable performance in the client machine.



Chap.12. History of RPC

Other advantages of using RPC are:

* It hides most of the network transport details from programmers. In this way, it
allows programmers to develop and maintain their RPC-based programs more easily

* It uses a well-defined data representation format (e.g., XDR or external data repre-
sentation) to represent data that is transmitted between server and client processes.
The data format is machine architecture-independent. It allows machines of differ-
ent architectures (e.g., Intel x86-based machines and SUN SPARC workstations) to
communicate via RPC

* It supports all network transport protocols (connectionless and connection-based)

* Most advanced operating systems (e.g., UNIX, VMS, and Windows-NT) support
RPC and are compatible with each other. This allows users to develop network-
based applications that run across platforms and operating systems

The following sections examine the RPC programming techniques in more detail.

12.1 History of RPC

There were different implementations of RPC by different companies in the 1980s.
Among them were Sun Microsystems’s Open Network Computing (ONC) and Apollo Com-
puters’s Network Computing Architecture (NCA). Today, most commercial UNIX systems,
such as Hewlett Packadd’s HP-UX, International Business Machines’s AIX, Sun Microsys-
tems’s Sun OS 4.1.x, and Santa Cruz Operation’s SCO UNIX, all implement RPC based on
the ONC method.

However, Sun’s Solaris 2.x operating system and UNIX System V.4 implement RPC
based on a modified version of the ONC method. The two methods are very similar, namely,
they both use external data representation (XDR) format to transmit data across networks,
and provide a rpcgen compiler to simplify the creation of RPC applications. The two methods
differ, in that the ONC-based RPC APIs are based on sockets, whereas System V.4 RPC APIs
can be based on sockets or on TLI.

This chapter examines the RPC programming techniques supported by both the ONC
and UNIX Systems V.4 methods. In the following sections, unless stated explicitly, most
descriptions are applicable to the ONC and System V.4 methods.

12.1  RPC Programming Interface Levels

There are different levels of RPC programming interface. They range from the very top
level, where users invoke system-supplied RPC functions in the same manner ‘as calling C
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library functions (e.g., printf), to the lowest level, where users create RPC programs using
RPC APIs. These different programming interface levels are explained in detail in the rest of
the chapter.

At the highest level, there are system-supplied RPC functions that users may call
directly to collect remote system information. These functions can be used just like ordinary
C library functions. The only special setup needed to use them are: (1) special header files
that declare the function prototypes; and (2) links between the compiled programs with the -
Irpcsve switch. The librpesve.a library contains these RPC library function object codes.

_ The advantages of the RPC library functions are that they are easily used and impose
lite programming effort. However, there are only a few of these RPC library functions
defined in a system. Thus, there is limited application for these functions.

The second level of RPC programming is to use the rpcgen compiler to generate RPC
client and server stub routines automatically. Users write only the client main functions
(which call the RPC functions) and the server RPC functions to create client and server pro-
grams. The rpcgen compiler can also generate XDR functions to convert any user-defined
data types to XDR format for data transmission between client and server.

The advantage of using the rpcgen compiler is that users can focus on writing RPC
functions and client main functions. There is no need to know the low-level RPC APIs. This
saves programming effort and is less error prone. However, the drawbacks of this approach
are that users have little control over any detailed attributes of the network transports used by
the client and server programs created by rpcgen. They cannot manage the dynamic memory
used by XDR functions.

The lowest level of RPC programming interface is to use the RPC APIs to create RPC
client and server programs. The advantages of this are that users have direct control of the
network transports used by the processes and the dynamic memory management in the XDR
functions. However, this comes at the expense of more programming effort on the part of
users.

12.2 RPC Library Functions

The RPC library function header is <rpcsve.h>. Each header corresponds to a set of
related RPC library functions and their XDR functions. The object code of these functions is
stored in the librpcsvc.a librasy in the standard library directory (e.g., Jusr/lib).

The following are some common RPC library functions and their uses:
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RPC library function Uses

rusers Gets the number of logged-in users on a remote
system

rwall Wirites to a remote system

spray Sends packets to a remote system

rstat Gets performance data of a remote system

The following is an example program that makes use of the rstar RPC function to deter-
mine the up time of one or more remote systems. The up time is the elapsed time between
system boot time and the current time. The rstat function also collects the average swap and
paging statistics etc., of remote systems. The rstat function communicates with the rc.rstatd
daemon running on a remote system via RPC:

/* rstat.C: get remote systems up time */
#include <iostream.h>
#include <rpcsve/rstat.h>

extern “C” enum cint_stat rstat(char *host, struct statstime *stato);
int main( int argc, char* argv[] )
{
struct statstime statv;
if (arge==1) {
cerr << “usage: “ << argv[0] << “ <host> ...\n";
return 1;

)
while (--argc > 0) { /* do for each remote system specified */
if (rstat(*++argv,&statv)==RPC_SUCCESS) {
int deita = statv.curtime.tv_sec - statv.boottime.tv_sec;
int hour = delta / 3600;
int min = delta % 3600;
cout << “” << (*argv) << “ up “ << hour << “hr.“
<< (Min/60) << “ min. “ << (Min%60) << “ sec”

<< endl;
}
else perror(“rstat”);
}
return O;

}

The above program accepts one or more remote system host names as command line
argument. For each remote system specified, the process calls rstat to collect the remote sys-
tem statistics. These data are put into the statv variable, and the up time of the remote system
is computed by subtracting the statv.boottime.tv_sec value from that of the statv.cur-
time.tv_sec. The struct statstime data type is defined in the <rpcsvc/rstat.h> header.
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A sample output of the program is:

% CC rstat.C -o rstat -Irpcsvc -Insi
% rstat fruit lemon

“fruit’ up 1 hr. 12 min. 31 sec.

‘lemon’ up 0 hr. 39 min. 24 sec.

%

As stated earlier, RPC functions are easy to use and provide the same programming
interface as do C library functions. However, there are only a limited number of these func-
tions provided by a system; thus, users need to use the rpcgen or the lowest RPC program-
ming interface to create additional RPC functions for their own applications.

12.3 rpcgen

The rpcgen compiler is provided on most UNIX systems to support RPC-based appli-
cation development. The input to the compiler is a user-written text file that describes the fol-
lowing information:

* An RPC program number

« One or more RPC program version numbers

«. One or more RPC procedure numbers (in RPC, the term function and procedure are
used interchangeably)

« Any user-defined data types that are used to pass data from and to RPC functions.
The rpcgen creates XDR functions automatically for each of these data types

« Any optional C code that should be copied directly to the output files generated by
the compiler

An RPC function is identified by a program number, a version number, and a procedure
number.

An RPC program corresponds to one RPC server process, and the process is responsi-
ble for executing any of the defined procedures on a client’s behalf. An RPC version specifies
the revision level of a set of RPC functions. An RPC version number is an integer value and
should start from 1. An RPC procedure number is an unique ID assigned to an RPC function.
If there are multiple revisions of a function, the program and procedure numbers of that func-
tion are unchanged, only the RPC version number is different. All user-defined RPC function
procedure numbers should start from 1. There is always an RPC function whose procedure
number is zero in each RPC program. This function can be generated automatically by rpc-
gen or can be defined by users. This function takes no argument and returns nothing. Its pur-
pose is for a client to “ping” the server to confirm the existence of the server process.



Chap. 12.

For example, given the following program, print.c:

/* print.C */
#include <iostream.n>
#include <fstream.h>

int print( char* msy )
{
ofstream ofp( “/dev/console” );

if (ofp) {
ofp << msg << endl;
ofp.close();
return 1,
}
return 0;
}
int main( int argc, char* argv[] )
{
while (--argc > 0)
if (print(*++argv))
cout << “msg ” << (*argv) << “ delivered OK\n”:
else cout << “msg ” << (*argv) << “ delivered failed\n”:
return O;
}

The program may be compiled and run as follow:

%  CC print.C -o print

%  print “Hello world” “Good-bye”
msg "Hello world" delivered OK
msg ‘Good-bye" delivered OK

rpcgen

the messages Hello world and Good-bye are displayed on the system console window of the

machine where the print program is run.

To convert the print function to a remote procedure, a print.x file is created manually for

it, as in the following:

/* print.x file: this is the input file for rpcgen */
program PRINTPROG

{
version PRINTVER
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int PRINT ( string) = 1;
}=1
} = 0x20000001;

In the print.x file, the assigned RPC program number, version number, and procedure
number of the print function are 0x20000001, 1, and 1, respectively. The “program” and
“version” are reserved key words. for the rpcgen, and the PRINTPROG, PRINTVER, and
PTINT are user-defined manifested constants for these assigned numbers in relation to the
print function. By convention, these constants are specified in upper case, but they can be
specified in lower case also.

Note the print function prototype declaration in print.x: the formal argument type of
print is defined to be string, which is an RPC-defined data type for a NULL-terminated char-
acter string. Remote procedure call differentiates the data type of character pointers and
NULL-terminated character arrays with the introduction of the string data type.

The print.x file is processed by rpcgen as:

% s

print.x

%  rpcgen print.x
% Is

printh printx  print_cint.c print_svc.c

There are three files generated by rpcgen from the print.x files. These files and their
uses are:

File from rpcgen Uses

print.h Header file for the client and server program

print_svc.c The server program without the RPC function defi-
nition

print_cint.c The client program stub. It contains all the inter-

face functions to call the RPC server.

As a rule, if the input file to rpcgen is called <name>.x, the three corresponding output
files generated by rpcgen are called: <name>.h, <name>_svc.c, and <name>_clnt.c. '

The print.h header contains the declaration of the PRINTPROG, PRINTVER, and
PRINT manifested constants, and the print function prototype. The print.h file for the above
print.x file, as generated by rpcgen is:
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#ifndef _PRINT_H_RPCGEN
#define _PRINT_H_RPCGEN
#include <rpc/rpc.h>

#define PRINTPROG ((unsigned long)(0x20000001))
#define PRINTVER ((unsigned long)(1))
#define PRINT ((unsigned long)(1))

extern int * print_1( char**, CLIENT* );
#endif MM _PRINT_H_RPCGEN */

Note the print function declaration in print.h: the function name is the original fol-
lowed by an underscore (“_") character and a procedure number. Thus, the RPC function
name for the print function of version 1 is prin¢_1. Furthermore, the return value of print_I is
specified as int* instead of int. This is typical of RPC functions: The argument and return
value of each RPC function are passed by address, so if a local function accepts a char*-
typed argument, its RPC counterpart accepts a char**-typed argument. The same is also true
for return values: If a local function returns an int-typed value, its RPC counterpart returns an
int*-typed value.

The print_I function is created manually by a user from the print function. Its defini-
tion is specified in a separated print_I.c file as:

* print_1.c file: server print function definition */
#include <stdio.h>
#include "print.h"

int* print_1( char** msg )
{
static int result;
FILE *ofp = fopen ( “/dev/console”, “W”
if (ofp) {
fprintf( ofp, “%s\n”, *msg );
fclose( ofp );
result=1;
)
else result = 0,
return &result;

The major differences between the print and print_I definitions are that the argument
and return values are pointer types. Thus, the result variable is defined as static in print_1, so
that the function can return its address as a return value.
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Once the print_I.c is defined, the server program can be compiled by a C compiler and
run as follows:

% cc -o print_server print_1.C print_svc.c -Ins!
%  print_server

There is no need to specify the ampersand (“&) symbol when running the server pro-
- gram, as it is specified in print_svc.c to be executed in the background automatically. The -
Insl option says that the server program requires linking with the libnsl.so or libnsl.a library
to resolve all the RPC external library function references. This option is Sun Solaris-specific
and may be replaced by a different option on a different platform.

The client program main function requires definition by the user. The main function
calls the remote print_I function. The following print_main.c is modified from the main
function in print.C to construct the main client program:

/* print_main.c: client main function */
#include <stdio.h>

#include “print.h”

int main( int argc, char* argv(] )

{
int “res, i;
CLIENT *cl;
if (argc<3) {
fprintf( stderr, “usage: %s <svc_host > msg ..\n“, argv(0] );
return 1;
}
if (1(cl = cint_create( argv[1], PRINTPROG, PRINTVER, “tcp”)) {
cint_pcreateerror( arhv{1]);
return 2;
}
for (i=arge-1;i > 1;i--)  {
if (!(res = print_1(&argvli], c))) {
cint_perror(cl, argv{1] );
return 3;
else if (*res==0) {
fprintf( stderr, “print_1 fails\n” );
return 4,
else printf( “print_1 succeeds for %s\n“, argv(i] );
}
return O;
}
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The command line arguments to the client program are: the host name of a print server
and one or more messages to be sent to the server. The client program calls the cint_create
function to obtain a handle to communicate with the print server. The arguments to the
clnt_create function are the server host machine name, the server program number, and ver-
sion number. The last argument, tcp, specifies that the client and server processes will com-
municate via the TCP/IP transport protocol.

If the cint_create call fails, it returns a NULL pointer, and the cint_pcreateerror func-
tion is called to depict a diagnostic message for the error. On the other hand, if the cint_create
function succeeds, it returns a CLIENT* handle, which is used as the second argument value
in the subsequent prinz_1 function call. The print_I function definition for the client program
is defined in the print_clnt.c file. It is a stub, which in turn, calls the print_1 function in the
server program.

If the client’s print_I function returns a NULL pointer, it means that the remote func-
tion call failed. In this case, the specified transport is not available or not working somehow,
and the clnt_perror function is called to depict the reason of the failure. If print_I returns a
non-NULL pointer value, the res pointer is consulted to obtain the returned status code of the
print_I function. The possible values of the status code are application-defined and vary for
different RPC functions.

The client program is generated by compiling the print_main.c and print_clnt.c mod-
ules together:

%  cc -0 print_client print_cint.c print_main.c -Insl
Assume that the print_server program is running in the background on a machine

called fruit. The print_client program can then be run as follows on any machine that is con-
nected to fruit via a local or wide area network:

%  print_client fruit “Hello world” “Good-bye”
print_1 succeeds for ‘Hello world’
print_1 succeeds for ‘Good-bye’

The system console window on fruit should display the following messages:

Hello world
Good-bye
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12.3.1 cint_create

The formal syntax of the clnt_create function is:

#include <rpc/rpc.h>

CLIENT* clint_create ( const char* hostname, const u_long prognum,
const u_long versnum, const char* nettype );

The hostname value is a NULL-terminated character string and specifies the name of a
remote machine where the server process is run.

The prognum and versnum values are the program number and version number, respec-
tively, of the remote function to be called.

The nettype value is a NULL-terminated character string that specifies what transport
to use for communication between client and server. The possible values of nefiype and their
meanings are:

nettype value Meaning

“netpath” Choose a transport in the order specified in the
NETPATH environment variable. If the NETPATH
environment is not set, choose a “visible” trans-
port, in the order specified in the /etc/netconfig file

“ Same interpretation as “netpath”

“visible” Choose a transport in the order specified in the /
etc/netconfig file, which has the “v” (visible) flag
set

“circuit_v” Same as “visible”, but choose only connection-
based transport

“datagram_v" Same as “visible”. but choose only connectionless
transport

“circuit_n" Same as “netpath”, but choose only connection-
based transport

“datagram_n" Same as “netpath”, but choose only connectionless
transport

“udp” Use the UDP transport

“tep” Use the TCP transport

If a nettype value is “netpath”, “*, “circuit_n", or “datagram_n", the client and server

processes consult the NETPATH environment variable to determine which transport to use
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for RPC communication. The NETPATH environment variable is user-defined and contains a

colon-delimited list of transports. The following is an example of a shell command defining
the NETPATH environment variable:

% setenv  NETPATH tep:udp

The return value of the function is NULL if it fails or a CLIENT* pointer that is the
handler for communication with d server process.

Note the clnt_create function is UNIX System V. 4-specific. The ONC functions to cre-
ate RPC client handles are:

#include <rpc/rpc.h>

CLIENT* clinttcp_create (struct sockaddr_in* svr_adds,
const u_long prognum, const u_long versnum, int* sock_p,
const u_long sendbuf_size, const u_long recvbuf_size);

CLIENT* clntudp_create (struct sockaddr_in* svr_addr,
const u_long prognum, const a_long versnum,
struct timeval retry_timeout, int* sock_p);

The cinttcp_create and the clntudp_create functions are the TCP and UDP versions of
the clnt_create function, respectively. These two functions use sockets as their underlying
communication method, and the NETPATH environment variable is not used. Specifically,
the svc_addr argument value is a pointer to the socket address of a server host name, and the
sock_p argument value is the pointer to a socket port number of an RPC server. The socket
port number may be specified as RPC_ANYSOCK, which means that it can be whatever port
actually in use by the server.

Finally, the retry_timeout argument value specifies how long a client process should
wait for a server response before it sends its request to the server again.

12.3.2 The rpcgen Program

The invocation syntax of the rpcgen program is:

rpcgen [<options>] <input_file>
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The input_file argument is the path name of a.x file created by a user. This file specifies
an RPC program number, a version number(s), and a proczdure number(s). Furthermore, any
user-defined data type used as an input argument and/or retum value for RPC functions is
also defined in this file.

The rpcgen program may take many options, but the following options are of most sig-
nificance:

rpcgen option Meaning

-K <time> Specifies when a server process should exist after it
has serviced a client request. If this option is not
specified, the default <time> is 120 seconds. If
<time> is set to -1, the server process will never
terminate

-8 <transport> Specifies a.transport to be used for the server pro-
cess. The possible <transport> values are the
same as those of the nettype values in a cint_create
call

For example. the following command invokes rpcgen to compile the msg.x file. The
server program derived from the corresponding msg_svc.c file will exist 60 seconds after it
has serviced a client request. It will use one of the connection-based and “visible” transports,
as specified in the /etc/netconfig file to communicate with its client process.

% rpcgen -K 60 -s circuit_v msg.x

12.3.3 A Directory Listing Example Using rpcgen

This section depicts another example of an RPC program generated via the rpcgen. The
RPC function scandir gets a directory path name and an integer flag as input arguments. The
function returns a linked list of file names that exist in the named directory. Furthermore, if
the input flag value is nonzero, it also returns the UID and the last modification time stamp of
each file found.

The scan.x input file to rpcgen is:

/* scan.x: directory listing service */
const MAXNLEN = 255;
typedef string name_t<MAXNLEN>;
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I* input argument data type to scandir()
typedef struct arg_rec *argPtr;
struct arg_rec
{
name_t dir_name;
int iflag;

|3

/* The linked list record structure for one file info */
typedef struct dirinfo *infolist;

struct dirinfo
{
name_t name;  /* file name */
u_int uid; /* UID */
u_long modtime; /* last modification time */
infolist next; /* linked-list ptr */
|5

* return data type of scan() */
union res switch (int errno)

{
case 0: infolist list;
default: void;
|5
program SCANPROG
{
version SCANVER
{
res SCANDIR(argPtr) = 1;
b=1;
} = 0x20000100;

The input argument type to the scandir_1 RPC function is the address of a pointer to a
struct arg_rec typed variable, which specifies a directory path name (the struet
arg_rec::dir_name field) and an integer flag (the struct arg_rec::lflag field). The return data
type of the function is nothing if the function fails. Otherwise, a linked list of records is pro-
duced, with each record of the type struct dirinfo specifying file information. The name_t
definition states that it is a NULL-terminated character string with, at most, MAXNLEN
characters.

The RPC program, version, and procedure numbers are specified as 0x20000100, 1,
and 1, respectively.
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The scan.x is compiled by the rpcgen as:

%

rpcgen scan.x

There are four files generated from this compilation: scan.h, scan_svc.c, scan_clnt.c,
and scan_xdr.c. The scan_xdr.c file contains the XDR conversion functions for the struct
arg_rec and the struct dirinfo data values.

The scandir_I function for the server program is defined in the scan_I.c file:

/* scan_1.c: server’s scandir function definition */
#include <dirent.h>

#include <string.h>

#include <malloc.h>

#include <sys/stat.h>

#include “scan.h”

res* scandir_1(argPtr* darg)

{

DIR *dirp;
struct dirent *d;
infolist nl, *nip;
struct stat statv,
static res res;

if |(dirp = opendir((*darg)->dir_name))) {
res.errno = errno;
return &res;

xdr_free(xdr_res, &res);
nlp = &res.res_u.list;
while (d=readdir(dirp)) {
nl = *nip = (infolistymalloc(sizeof(struct dirinfo));
nl->name = strdup(d->d_name);
nlp = &nl->next;
if ((*darg)->iflag) {
char pathnm[256];
sprintf(pathnm,"%s/%s",(*darg)->dir_name,d->d_name);
if ('stat(pathnm,&statv))  {
nl->uid = statv.st_uid;
nl->modtime = statv.st_mtime;
}
}

}
*nip = NULL;
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res.errno = 0;
closedir(dirp);
return &res;

}

The scandir_1 function calls the opendir API to get a handler for scanning a directory
file whose name is specified in the function input argument (*darg)->dir_name. If opendir
fails, the scandir_1 function returns the errno value via the res.erro field.

If the opendir call returns successfully, the function calls readdir repeatedly to get all
files in the named directory. For each file obtained, a struct dirinfo record is allocated dynam-
ically. The function stores the newly obtained file name and, possibly, the file UID and last
modification time (if the (*darg)->Iflag value is nonzero) in that record. The struct dirinfo
records are chained together into a linked list, returned via the res.res_u.list field.

The server program is compiled and run as follows:

%  cc scan_1.c scan_xdr.c scan_svc.c -0 scan_svc -Insl
%  scan_svc

The client main program is specified in the scan_main.c:

/* scan_main.c: main function for the client program */
#include <stdio.h>
#include “scan.h”

int main( int argc, char* argv())

{
struct arg_rec *iarg = (struct arg_rec*)malloc(sizeof(struct arg_rec));
res ‘*result;
infolist nl;

if (argc!=4) {
fprintf( stderr, "usage: %s host directory <long>\n*, argv[0] );
return 1;
}
char *server = argv[1];
iarg->dir_name = argv[2);
iarg->iflag = 0;
if (sscanf(argv(3],"%u” &(iarg->lflag))!=1) {
fprintf( stderr, "Invalid argument: ‘%s’\n*, argv[3] );
return 2;
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CLIENT *cl = cInt_create(argv{1], SCANPROG, SCANVER, “visible");

if (i) {
cInt_pcreateerror(server);
return 3;
}
if (/(result = scandir_1(&iarg, cl))) { / RPC call fails
cint_perror(cl, server);
return 4;
}
if (result->errno) { // function returns failure code

errno = result->errno;
perror(iarg->dir_name);
return 5;

}

for (ni=result->res_u.list; nl; ni=nl->next)  { // function succeeds
if (iarg->Iflag)
printf( “...%s, uid=%d, mtime=%s\n" , nl->name, ni->uid,
ctime(&nl->modtime) );
else printf (“...%s\n", nl->name});
}

return O;

}

The client program is invoked with the host name of the server process, a remote direc-
tory name, and an integer flag that specifies whether the UID and last modification time
stamp of files in the specified directory are wanted (Iflag value is nonzero) or not (/flag value
is zero).

The client main function calls the cint_create to get a handler of the transport end point
that connects the specified server process. It then packs all the input argument data to the
dynamic memory (pointed to by the iarg variable) before it calls the scandir_I RPC function.
After the RPC function returns, the return value is checked to see whether the RPC call suc-
ceeded. If the call succeeded, the remote file information is printed to the standard output
accordingly. Otherwise, an appropriate error diagnostic is depicted to the user.

The client program is compiled and run as follows. It is assumed that the server is run-
ning on a machine called fruit.

% cc scan_main.c scan_xdr.c scan_cint.c -0 scan_cls -Insl
% scan_cls fruit /etc 1

...magic, uid=2, mtime=Wed Aug 3 11:32:33 1994
...protocols, uid=10, mtime=Wed Aug 3 11:32:30 1994

451



Chap. 12. Low-Level RPC Programming Interface

12.3.4 rpcgen Limitations

The fact that rpcgen hides the low-level RPC APIs from users has both advantages and
disadvantages.

rpcgen has the advantages of reducing programming effort and of being less error
prone. Furthermore, users can concentrate more in coding RPC functions and client main
functions, rather than RPC transport interface functions.

The disadvantages of rpcgen, however, are the following:

» Users have no direct control of the transport used by the server and client programs
generated by rpcgen

* Users cannot manage the dynamic memory used by the XDR functions generated by
rpcgen

* Most rpcgen compilers do not generate C++-compatible client and server stub func-
tions. This may require manual modification of those stubs to make them acceptable
for the C++ compiler (note that the rpcgen on Sun Microsystems workstations pro-
vides the -C option for generating C++-compatible files).

Given these limitations of rpcgen, users need to learn the lower level RPC APIs. This
would allow users to work around the above rpcgen limitations if they become significant
obstacles to application development.

12.4 Low-Level RPC Programming Interface

The low-level RPC APIs are declared in the <rpc/rpc.h> header. These APIs include
the creation of client and server handles with user-specified transports, the registration of
RPC functions to the rpcbind daemon, and the calling of remote RPC functions from client
processes. Furthermore, client processes can specify ‘authentication methods via these APIs
to establish secure connections with server processes.

Before the low-level RPC APIs are presented, the methods to create XDR functions for
user-defined data types are covered. This is because some lower level RPC APIs require users
to specify the actual data and their corresponding XDR functions for RPC function argu-
ments and return values. By writing their own XDR functions, users also have direct control
over dynamic memory allocation and deallocation in those functions.

12.4.1 XDR Conversion Functions

An XDR function is called twice whenever a piece of data is passed between a client
process and a server process. For example, when a client passes some data to an RPC func-
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tion, the data are converted to XDR format before being transmitted to the network. This con-
version process is called serializing. Then, before the target RPC function receives the data,
the same XDR function is called on the server side to convert the data from XDR format to
the data format of the host machine. This process is called deserializing. There are built-in
basic XDR conversion functions for most RPC basic data types. These basic functions are
capable of performing both serializing and deserializing. Furthermore, user-defined XDR
functions (which, in turn, call the basic XDR functions) automatically inherit the serializing
and deserializing capability. These built-in basic XDR functions are:

RPC data type
int

fong
shorl
char
u_int
u_long
u_short
u_char
float
double
enum
bool
string
union
opaque

XDR function
xdr_int
xdr_long
xdr_short
xdr_char
xdr_u_int
xdr_u_long
xdr_u_short
xdr_u_char
xdr_float
xdr_doubie
xdr_enum
xdr_bool
xdr_string
xdr_union
xdr_opaque

The u_int, u_long, etc. data types are the unsigned counterparts of the data types ins,
long, etc. The bool data type is converted to the bool_t data type by the rpcgen, and the boot_t

data type is defined in C as:

typedef enum { TRUE=1, FALSE=0}  bool_t;

The opaque data type stands for a sequence of arbitrary bytes. It may be used to declare
fixed-size arrays or variable-size arrays, such as the following:

opaque
opaque

The above definitions are converted to C definitions by rpcgen as:
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char x[56];

struct

{
u_int  xv_len; /* actual length of the xv_val array */
char  *xv_val; /* dynamic érray */

} xv,

If users define their own data types, they'can use either rpcgen to generate the XDR
functions for these data types or write their own XDR conversion functions. For example, if
the user defines the following data type struct complex:

struct complex

{
unsigned uval;
char ary[80];
int *ptr;
fong Ival;
double dval;

X

the XDR function for the struct complex is:

bool_t xdr_complex ( XDR *xdrs, struct complex* objp)
{
if (!xdr_u_int(xdrs, &objp->uval)) return FALSE;
if (!xdr_vector(xdrs, objp->ary, 80,
sizeof(char), (xdrproc_t)xdr_char))
return FALSE;
if (!xdr_pointer(xdrs, &objp->ptr, sizeof(int), (xdrproc_t)xdr_int))
return FALSE;
if (!xdr_long(xdrs, &objp->ival)) return FALSE;
if (Ixdr_double(xdrs,&objp->dval)) return FALSE;
return TRUE;

All XDR function return values are of type bool_t, which is TRUE if a function suc-
ceeds, FALSE otherwise. The XDR function for complex consists of calling basic XDR func-
tions to convert each field member of the complex record. Note that the fixed-size array
complex::ary is converted by the RPC built-in function xdr_vector. The arguments of the
xdr_vector function are: an XDR pointer that points to a buffer holding the converted data,

454



Chap. 12 Low-Level RPC Frogramming Interface

the fixed-size array address, the number of elements in the array, the size of each array ele-
ment, and the XDR function converting each array element.

The complex::ptr member is converted by another RPC built-in XDR function
xdr_pointer. The arguments to the xdr_pointer function are: an XDR pointer that points to a
buffer holding the converted data, the address of the pointer, the size of the data that the
pointer points to, and the XDR function for those same data.

12.4.2 Lower Level RPC APIs

To create RPC-based client and server programs, there are two sets of RPC APls (one
for each). These APIs and their calling sequences in the client and server processes are shown
in Figure 12.1.

client server
clnt_<create_RPC_handle> svc_<create_ RPC_handle>
l svc_run
cint_<set_authentication> l
l svc_getargs
cint_call l
svc_sendreply
Figure 12.1 Client and server RPC APIs and calling sequences

The cint_<create_RPC_handle> stands for a set of RPC APIs, each of which creates a
client handle that can be used to communicate with an RPC server for specified RPC program
and a version numbers. These APIs differ in their level of detail in specifying the network
transport protocol used in communicating with an RPC server. These APIs are:

Client AP Use

cint_create Specifies a generic class of transport to be selected
at run time

cint_tp_create Specifies a specific transport to be used
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Client AP1 ‘ Use

cint_tli_create Specifies a TLI transport end point to be used, and
the sending and receiving buffer size for RPC com-
munication. The TLI handle is created in the client
program

The cint_<create_authentication> stands for a set of RPC APIs, each of which creates
an authentication data record to be used by an RPC server to authenticate a client. These APIs
are optional and are needed only if an RPC server requires security control. Furthermore,
users may create their own RPC client/server authentication schemes and their own RPC
authentication functions for their programs. The standard RPC authentication functions for
client programs are:

Client API Use

authnone_create Creates a NULL: authentication data record. The
calling RPC server should not require client
authentication

‘authsys_create_default Creates an authentication record based on System
V process access control method
authdes_seccreate Creates an authentication record whose data is

encrypted using the DES encryption method

The cint_call API calls an RPC server to execuwe an RPC program of a given procedure
number. The function call includes the input argument and its XDR function, as well as the
address of the variable that receives the return value and its XDR function.

On the server side, the svc_<create_RPC_handle> stands for a set of RPC APIs, each
of which creates a server handle that can be used to respond to client RPC requests. These
APIs differ in their level of detail specifying the network transport protocol used in communi-
cating with RPC clients. These APIs are:

Server API Use

svc_create Specifies a generic class of transport to be selected
at run time

svc_tp_create Specifies a specific transport to be used

sve_tli_create Specifies a TLI transport end point to be used, and

the sending and receiving buffer size for RPC com-
munication. The TLI handle is created in the server
program
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The svc_run API is called after a server creates an RPC handle. This function goes into
an infinite loop waiting for client RPC requests to arrive and calls a user-defined dispatcher
function to service each call. This function may be replaced by a user-defined function, par-
ticularly if users want the server to do something else whenever it is not servicing requests.

The dispatcher function calls the svc_getargs API to extract any RPC function argu-
ments sent from a client process. It then calls the requested RPC function and uses the
svc_sendreply API to send the function return value to the client.

The syntax of these APIs is discussed in later sections. The next section introduces two
RPC classes that encapsulate low-level RPC API interfacing. These RPC classes provide a
simplified RPC programming interface for users, while allowing user control over RPC trans-
port specification and memory management of XDR function data.

12.5 RPC Classes

The section defines two RPC classes: One for constructing a RPC server, and one for
construction a RPC client. The main use of these classes is to provide a high-level RPC inter-
face to application developers, so that they don’t have to know the details of the ONC or
UNIX System V RPC APIs. Furthermore, users may derive their own subclasses from these
RPC classes, such that their subclass objects store more data than do the RPC server or client
handles, as well as provide additional functions (for example, predefined callback and broad-
cast functions).

In summary, the advantages of the RPC classes are:

+ They hide the differences in APIs between the ONC and System V.4 methods. This
makes applications that use these classes portable on most commercial UNIX sys-
tems

+ They reduce the learning time and programming effort of users in creating RPC
applications

o These classes enable users to focus their programming efforts in developing their
core client and server fuhctions. This provides the same advantage as does rpcgen

+ The RPC classes can be modified by users to control RPC transports and the authen-
tication methods used, as well as any dynamic memory management of XDR func-
tion data

The following RPC.h header defines two RPC classes that encapsulate the RPC client
and server APIs. ‘

#ifndef RPC_H
#define RPC_H
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#include <iostream.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>
#include <unistd.h>
#include <time.h>

#include <sys/types.h>
#include <rpc/rpc.h>
#include <utmp.h>

#define ADD_FUNC ADD_PROC
#ifdef SYSV4

#include <rpc/svc_soc.h>
#include <rpc/pmap_cint.h>
#include <netconfig.h>

#else /* ONC */
#include <rpc/pmap_cint.h>
#include <sys/socket.h>

#include <netdb.h>

#define AUTH_SYS AUTH_UNIX
#endif

#define UNDEF_PROGNUM  0x0
#define TCP_BUFSIZ 4098
typedef int (*rpcprog)(SVCXPRT*);

typedef struct

{
unsigned prgnum;
unsigned vernum;
unsigned prcnum;
rpcprog func;

} RPCPROG_INFO;

/* RPC server class */
class RPC_svc
{

int rc;

unsigned prgnum, vernum;

static RPCPROG_INFO* progList;

static int numProg;

SVCXPRT *svep;

public:

/* Dispatch routine */
static void dispatch( struct svc_req* rqstp, SVCXPRT *xport )

{
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#ifdef SYSV4

#else

#endif

#ifdef SYSV4

#endif

RPC Classes

if (rgstp->rq_proc==NULLPROC) {
svc_sendreply(xport, (xdrproc_t)xdr_void, 0);
return ;
b
uid_t uid = 0;
gid_t gid = 0, gids[20];
short len =0;
switch (rgstp->rq_cred.oa_flavor) {
case AUTH_NONE:
break;
case AUTH_SYS: {

struct authsys_parms* authp;
authp = (struct authsys_parms*)rgstp->rq_cintcred;

struct authunix_parms* authp;
authp = (struct authunix_parms*)rgstp->rq_cintcred;

uid = authp->aup_uid;
gid = authp->aup_gid;
} break;

case AUTH_DES: {
if (lauthdes_getucred(
(struct authdes_cred*)rgstp->rq_cintcred,
&uid, &gid, &len, (int*)gids)) {
sveerr_systemerr(xport);
return;

}
} Dbreak;

default:
svcerr_weakauth(xport);
return;
}
/*Example authentication checking*/
if (uid != getuid() && uid!=(uid_t)0) {
svcerr_weakauth(xport);
return;

}

for (int i=0; i < RPC_svc::numProg; i++)
if (RPC_svc::progList[i].prcnum==rgstp->rq_proc &&
RPC_svc::progList{i].vernum==rgstp->rq_vers &&
RPC_svc::progList[i].prgnum==rqstp->rq_prog)
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it (*RPC_svc::progList]i].func)(xport)
I=RPC_SUCCESS)
cerr << “rpc server execute prog “
<< rgstp->rq_proc << “ fails\n™;
break;
}
if (i >= RPC_sve::numProg) svcerr_noproc(xport);

b

/* Constructor function. Create an RPC server object for the
given prognum/version
*/
RPC_svc( unsigned prognum, unsigned versnum,
const char* nettype)

{

#ifdef SYSV4 .
rc=svc_create(dispatch, prognum, versnum, nettype);
if (Irc)

cerr << “Can’t create RPC server for prog: “
<< prognum << endl;
else prgnum = prognum, vernum = versnum:
svep = 0;

#else
int proto = O;
if (nettype && Istrcmp(nettype,'tcp”)) {

svep=svctep_create(RPC_ANYSOCK, TCP_BUFSIZ,
TCP_BUFSIZ);
proto = IPPROTO_TCP;
}else {
svep=svcudp_create(RPC_ANYSOCK);
proto = IPPROTO_UDP;
}

if ('svep) {
rc=0;
cerr << “Can’t create RPC server for prog: “
<< prognum << endl;
} else {
rc=1;
prgnum = prognum, vernum = versnum;
} .
pmap_unset( prognum, versnum );
if (!svc_register(svep, prognum, versnum, dispatch, proto))

cerr << “could not register RPC program/ver:
<< prognum << /' << versnum << endl:.
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#endif
|5

/* create a server handle for call back */
RPC_svc( int fd, char* transport, u_long progno, u_long versno )
{
#itdef SYSV4
struct netconfig *nconf = getnetconfigent(transport),
if (Inconf) {
cerr << “invalid transport: “ << transport << endl
rc=0;
return;
}
svep = sve_tli_create( fd, nconf, 0, 0, O);
if (!svep) {
cerr << “create server handle fails\n”;
rc=0;
return;
}
if (progno == UNDEF_PROGNUM)
progno = gen_progNum( versno, ncont,
&svcp->xp_ltaddr);
if (svc_reg(svep, progno, versno, dispatch, nconf)==FALSE)
{
cerr << “register prognum failed\n”;
rc =0;
}
freenetconfigent( nconf );
#else
/* fd should be a socket desc. which may be
RPC_ANYSOCK */
if (progno == UNDEF_PROGNUM) {
progno = gen_progNum ( versno, &fd, transport );
}
int proto=0;
if (Istrcmp(transport,'tcp”)) {
svcp = svetep_create( fd, TCP_BUFSIZ, TCP_BUFSIZ ),
if (fd) proto = IPPROTO_TCP;

}

else {
svep = sveudp_create ( fd ); .
if (fd) proto = IPPROTO_UDP;

}

if (Isvep) {
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cerr << “create server handie fails\n”;
rc=0; '
return;

if (fd) pmap_unset( progno, versno );
if (Isve_register(svep, progno, versno, dispatch, proto)) {
cerr << “could not register RPC program/ver:
<< progno <</ << versno << endl;
rc-0;
return;

}

prgnum = progno, vernum = versno;
rc=1;

#endif

h

/* return program number */
u_long progno() { return prgnum; };

/* destructor function */
APC_svc()
{
pmap_unset( prgnum, vernum );
svc_unregister( prgnum, vernum );
if (svep) sve_destroy(svep);

/* Check it a server object is created successfully */
int good() { returnrc; I

/* server pool RPC request from clients */
static void run() { svc_run(); b

/* poll for RPC requests. This is for asynchornous RPC cali-back */
static int poli( time_t timeout )
{
int read_fds = svc_fds;
struct timeval stry;
stry.tv_sec = timeout;
stry.tv_usec = 0;
switch (select(32, &read_fds, 0, 0, &stry)) {
case -1: return -1;
case 0: return0; /* no event*/
default:  svc_getreq( read_fds );

}
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return 1,
2
/* register an RPC function and start servicing RPC requests */
int run_func( int procnum, rpcprog func )

if (good()) {
if (func) add_proc( procnum, func );
run(); /* this willl never return */
}
return -1,

b

/* register a new RPC function */
void add_proc( unsigned procnum, rpcprog func )
{
for (int i=0; i < numProg; i++)
progListinumProg-1].func = func &&;
proglist{numProg-1].prgnum = prgnum &&;
proglistinumProg-1].vernum = vernum;
if (++numProg == 1)
progList = (RPCPROG_INFO*)malloc(
sizeof(RPCPROG_INFO));
else
proglList = (RPCPROG_INFO™)realloc((void*)progList,
sizeof(RPCPROG_INFO)*numProg);
progList{numProg-1].func = func;
proglistinumProg-1].prgnum = prgnum;
progList(numProg-1].vernum = vernum;
progList{numProg-1].prcnum = procnum;,
b
/* Called by an RPC function to get argument value from a client */
int getargs( SVCXPRT* transp, xdrproc_t func, caddr_t argp )
{
if (Isvc_getargs( transp, func, argp)) {
svcerr-decode(transp);
return -1;
} else return RPC_SUCCESS;

h

/* Called by an RPC function to send reply to a client */

int reply( SVCXPRT* transp, xdrproc_t func, caddr_t argp )
{

if (isvc_sendreply(transp, func, argp)) {
svcerr_systemerr(transp);
return -1;

}
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else return RPC_SUCCESS;
h

#ifdef SYSV4
/* Generate a transient RPC program no. */
static unsigned long gen_progNum( unsigned long versnum,
struct netconfig* nconf, struct netbuf* addr)

{
static unsigned long transient_prognum = Ox5FFFFFFF;
while (Irpcb_set( transient_prognum--, versnum,
nconf, addr))
continue;
return transient_prognum +1;
2
#endif

static unsigned long gen_progNum ( unsigned long versnum,
int* sockp, char* nettype )
{

static unsigned long transient_prognum = Ox5FFFFFFF;
int s, len, proto = IPPROTO_UDP;

int socktype = SOCK_DGRAM;

struct sockaddr_in addr;

if (!strcmp(nettype,"tcp™)) {
socktype = SOCK_STREAM,;
proto =IPPROTO_TCP;

}

if (*sockp== RPC_ANYSOCK) {
if ((s = socket(AF_INET, socktype, 0)) < 0) {
perror(“socket”);
return O;
}
*sockp =s;
}

else s = *sockp;

addr.sin_addr.s_addr = 0;
addr.sin_family = AF_INET;
addr.sin_port =0;

len = sizeof(addr);

(void)bind( s, (struct sockaddr*)&addr, len );
if (getsockname( s, (struct sockaddr*)&addr, &len ) < 0)
{
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perror(“getsockname”);
return O;
}
while (!pmap_set( transient_prognum--, versnum, proto,
addr.sin_port))
continue;
return transient_prognum +1;

|3
};/* RPC_svc */

/* RPC client class
class RPC_cls
{

CLIENT *cintp;

char ‘*server;

public:
/* Constructor function. Create an RPC client object for
the given server/prognum/version */
RPC_cls( char* hostname, unsigned prognum, unsigned vernum,
char* nettype)

{
#ifdef SYSV4
if (I(cIntp=cInt_create(hostname,prognum,vernum,nettype)))
cint_pcreateerror(hostname);

else {
server = new charfstrlen(hostname)+1J;
strcpy(server,hostname);

}

struct hostent* hp = gethostbyname(hostname);
struct sockaddr_in server_addr;
int addrien, sock = RPC_ANYSOCK;

#else

if ('hp)
cerr << “Invalid host name: " << hostname << “\n”;
else {
addrlen = sizeof(struct sockaddr_in);
bcopy( hp->h_addr, (caddr_t)&server_addr.sin_addr,
hp->h_length);

se[ver,addr.sin_famﬂy = AF_INET;
server_addr.sin_port = 0;

if (nettype && Istrcmp(nettype,’tcp”))
cintp=cinttcp_create(&server_addr, prognum, vernum,
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&sock, TCP_BUFSIZ, TCP_BUFSIZ);
else {
struct timeval stry;
strytv_sec =3;
stry.tv_usec = 0,
cintp=cintudp_create(&server_addr, prognum,
vernum, stry, &sock);

}

if (Icintp)
cint_pcreateerror(hostname);

else {
server = njew charistrlen(hostname)+1};
strcpy(server,hostname);

} .

}

if (cintp) set_auth ( AUTH_NONE );

#endii
b

* destructor function */
~RPC_cls() { (void)cint_destroy( cintp ); };

/* Check if a client object is created successfully */
int good() { returncintp ? 1:0;};

I* set authentication data */
void set_auth( int choice, unsigned timeout = 60 )
{
switch (choice) {
case AUTH_NONE:
cintp->cl_auth = authnone_create();
break;
case AUTH_SYS:
case AUTH_SHORT:
#ifdef SYSV4
cintp->cl_auth = authsys_create_default();
#else
cintp->cl_auth = authunix_create_default();
#endif
break;
case AUTH_DES: {
char netname[MAXNETNAMELEN+1];
des_block ckey;
if (key_gendes(&ckey)) perror(“key_gendes”);
if (luser2netname(netname, getuid(), 0))
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cint_perror(cintp,server);
else clntp->¢l_auth = authdes_seccreate(netname,
) timeout, server, &ckey);
if ({(cIntp->cl_auth)) {
cerr << “client authentication setup fails\n”;
perror(“authdes_seccreate”);
cint_perror(cintp,server);
cintp->cl_auth = authnone_create();
}
} break;
default:
cerr << “authentication method << (int)choice
<< " pot yet supported\n”;
clntp->cl_auth = authnone_create();

|3

/* Call an RPC function */

int call( unsigned procnum, xdrproc_t xdr_ifunc, caddr_t argp,
xdrproc_t xdr_ofunc, caddr_t rsitp, unsigned iimeout = 20 )

{

if (\cintp) return -1;

struct timeval timv;

timv.tv_sec = timeout;

timv.tv_usec = 0;

if (cint_call(cintp, procnum, xdr_ifunc, argp,

xdr_ofunc, rsitp, timv)!=RPC_SUCCESS) {

cint_perror(cintp, server);
return -2;

}
return RPC_SUCCESS;
b

/* Support RPC broadcast */
static int broadcast( unsigned prognum, unsigned versnum,
unsigned procnum, resuitproc_t callback,
xdrproc_t xdr_ifunc, caddr_t argp,
xdrproc_t xdr_ofunc, caddr_t rsitp,
char* nettype = “datagram_v")
{
#ifdef SYSV4
return rpc_broadcast(prognum, versnum, procnum,
xdr_ifunc, argp, xdr_ofunc, rsitp, callback, nettype);
#else '
return cint_broadcast(prognum, versnum, procnum,
xdr_ifunc, argp, xdr_ofunc, rsitp, callback);
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#endif
2
/* set client time-out period */
int set_timeout( long usec )

{

if (‘cintp) return -1;

struct timeval timy;

timv.tv_sec = 0;

timv.tv_usec = usec;

return cint_control( cintp, CLSET_TIMEOUT, (char*)&timv);
h

/* get client time-out period */
long get_timeout()

if (\cintp) return -1;
struct timeval timv;
if (cint_control( cintp, CLGET_TIMEOUT, (char*)&timv)==-1)

{

perror(“cint_control®);
return -1;

}

return timv.tv_usec;

b
|3
#endif # _RPC_H ™Y/

The calling sequences of these RPC member functions in a typical client and server are
shown in Figure 12.2.

client server
RPC_cls::RPC_cls RPC_svc::RPC_svc
l RPC_svc::run_func
RPC_cls::set_auth i
l RPC_svc::getargs
RPC_cls::call l
RPC_svc::reply
Figure 12,2 Client and server RPC class tunctions and calling sequences




Chap. 12. RPC Classes

The RPC_sve::RPC_svc constructor function creates a server RPC handle for the given
RPC program and version numbers. Furthermore, this function registers a user-defined dis-
patcher function that is called when a client calls an RPC function managed by the server.
The last argument to RPC_svc::RPC_svc is the nertype value, which defines the transport
protocol to be used between the server and its clients. This function internally Ealls the
svc_create APl to create the server handle. However, users can easily modify the
RPC_svc::RPC_svc function to call the svc_tp_create or svc_tli_create API instead.

The RPC_svc::run_func is called to register an RPC function and its assigned proce-
dure number to the server, then causes the server to block and wait for client RPC calls (via
the svc_run API). Note that if a user wishes to register more than one RPC function on a
server, the server program will be changed accordingly, as follows:

RPC_svc *svcp = new RPC_svc(....);
if (Isvep Il Isvep->good()) return 1;
svep->add_func( <procnum1i>, prog1 );

svep->add_func( <procnumN-1>, progN-1);
svep->run_func( <procnumN>, progN);

When a client RPC request arrives, the dispatcher function registered via the
RPC_svc::RPC_sve function is called to service the client request. The dispatcher function
does the following:

o Checks that the client-requested RPC number is 0. If it is, the client is simply ping-
ing the server, and it simply sends a reply to the client with a NULL return value

« If the client specifies any authentication data, the function validates the data and
flags an authentication error if the validation fails. Note that in the current function,
the client authentication is optional. This may need to be changed for secure RPC
transactions. The server should always insist that clients send authentication data in
each RPC call. The RPC authentication method is discussed in a latter section

« After the client authentication succeeds, the dispatcher function calls the RPC func-
tion requested by the client

Each RPC function called by the RPC_svc::dispatch function should have the function
prototype of:

int <function_name> ( SVCXPRT" ),

where the argument is a transport handler for communication with a client’s transport
end point. The function return value is zero (RPC_SUCCESS) if it succeeds, nonzero other-
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wise. In addition to these, the RPC function should expect a global RPC_svc* pointer (whose
variable name is application-defined) that holds the address of the RPC server handle. The
function should call RPC_svc::getargs to extract any arguments from the calling client and
use the RPC_svc::reply to send a return value to the client.

In a client program, the client handle for specified RPC program and version numbers
is obtained via the RPC_clis::RPC_cls constructor function. The constructor function inter-
nally calls the clnt_create API to acquire the client handle. Like the RPC_svc constructor
function, the RPC_cls::RPC_cls function may be changed by users to use the cint_tp_create
or cint_tli_create API instead.

Client authentication data may be set via the RPC_cls::set_auth call. The RPC_cls
class currently supports the AUTH_NONE, AUTH_SYS, and AUTH_DES methods, but
users may modify the RPC cls::set_auth function to implement their own authentication
methods. The AUTH_NONE, AUTH_SYS, and AUTH_DES authentication methods are
described in a later section. Note that ONC uses AUTH_UNIX instead of the AUTH_SYS.

The client calls an RPC function via the RPC_cls::call function. The arguments to the
RPC_cls::call function are: an RPC procedure number, an XDR function to convert input
arguments to the XDR format, the address of a variable that holds the input arguments, an
XDR function to convert the RPC function return value (from XDR format to local machine
format), and the address of a variable holding the RPC function return value. This
RPC_cls: :call returns RPC_SUCCESS if it succeeds, a nonzero value otherwise.

The static RPC_cls: :broadcast function supports RPC broadcast requests from a client
process to all server processes on a network. This function is described in detail in section
12.8.

Finally, applications that use the RPC classes should be compiled with the following
options on different commercial UNIX systems:

UNIX system CC compile options
Solaris 2.x, SCO 5.x -DSYSYV -Isocket -insl
Sun 0S 4.1.x -Insi

HP-UX 9.0.x, 10.x None

IBM AIX 3.x and 4.x -Irpcsve

SCO 3.x -Isocket

The above compile options specify which RPC system libraries to be linked with user
applications on the various UNIX systems. The -DSYSV4 option is needed on Sun’s Solaris
2.x system, so that UNIX System V.4 RPC APIs are used instead of the ONC APIs.
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To illustrate the use of RPC classes, the remote message printing programs, as shown in
Section 12.3, are rewritten as follows. Note that the new client and server programs are sim-
pler than their previous versions, which use rpcgen:

The client program msg_cls2.C is:

/* client program: using low-level RPC APIs */
#include “msg2.h”
#include “RPC.h”

int main(int argc, char* argv(])
{
int res;
if (argc<3)  {
cerr << “usage: “ << argv[0] << “ host msg <nettype>\n”;
return 1,

}

/* create a client handler to an RPC server */
RPC_cls ci( argv[1], MSGPROG, MSGVER,

argc>=4 ? argv[3] : “netpath”);
if (\cl.good()) return 1;

/* call the printmsg RPC function. return value issettores*/ .
if (cl.call( PRINTMSG, (xdrproc_t)xdr_string, (caddr_t)&argv(2],
(xdrproc_t)xdr_int, (caddr_t)&res) = RPC_SUCCESS
return 3;

/* check RPC function’s return value */
it (res!=0)
cerr << “cint: call printmsg fails\n”;
else cout << “cint: call printmsg succeeds\n”;

return O;

}

The client program is invoked with two or three arguments. The first argument is the
host name of the machine where the RPC server is running. This may be a local machine
name if the client and server are both running on the same machine. The second argument to
the client program is a character string message sent to the RPC server for printout. The
optional third argument is the transport to be used by the client to communicate with the
server. If the third argument is"not specified, the default is “netpat. ”. The legal values for the
third argument and their meanings are the same as that for the nettype argument of the
cint_create API, as described in Section 12.3.1.
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The msg2.h is user-defined and contains only the declaration of the printmsg function
RPC program, version, and procedure numbers:

/* msg2.h */
#ifndef MSG2_H
#define MSG2_H

#include <rpc/rpc.h>

#define MSGPROG ((unsigned long)(0x20000001))
#define MSGVER ((unsigned long)(1))
#define PRINTMSG ((unsigned long)(1))

#endif /* IMSG_H */

The RPC server program that corresponds to the client program is msg_svc2.C:

/* server program: low-level RPC APIs */

" usage: msg_svc2 <transport> */

#include <iostream.h>

#include <fstream.h>

#include “msg2.h”

#include “RPC.h"

static RPC_svc *svcp = 0; / RPC server handle

/* the RPC function */

int printmsg( SVCXPRT* xtrp )

{
int res =0; /1 holds the return status code
char *msg=0; // hold client’s function argument

/* get function argument from client */
if (svcp->getargs( xtrp, (xdrproc_t)xdr_wrapstring,(caddr_t)&msg) !=
RPC_SUCCESS)
return -1;

/* get argument successful. Open the system console for output */
ofstream ofs (“/dev/console”);

if (ofs)
ofs << "server:’“ << msg << “\n”,
else res = -1;

/* send retumn status code to client */
if (svep->reply(xtrp, (xdrproc_t)xdr_int, (caddr_t)&res)
=RPC_SUCCESS)
res =-1;
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/* RPC function completes. Send a success return code to dispatch */
return res;

}

/* main server function */
int main(int argc, char* argvfl)
{
/* create a server for the given program number and version number */
svep = new RPC_svc( MSGPROG, MSGVER,
argc==2 ? argv{1] : “netpath”);

/* register the given RPC function and then waits for clients’ RPC
requests */
if (svep && svep->run_func( PRINTMSG, printmsg )) ;

return O; /* shouldn’t get here unless the server handle creation failed */

The server program is invoked with either no argument or a nettype specification. If no
nettype argument is specified, the “netpath” value is used as the default.

The server process calls the RPC_svc::RPC_svc function to create a server handle for
the given RPC program number, version number, and nettype value. After that, the server
calls the RPC_svc::run_func to register the printmsg function as a client-callable RPC func-
tion, then calls the svc_run to poll client RPC requests.

When a client’s RPC request arrives, the svc_run function calls the RPC_svc::dispatch
function to handle the request. The RPC_svc::dispatch function is responsible for checking
that the client RPC procedure number is correct and that the client authentication, if specified,
is valid. The RPC function is then called.

The RPC function, as invoked by the RPC_svc::dispatch function, calls the
RPC_svc::getargs function to get the client’s argument data. When the RPC function returns,
it sends its return value back to the client via the RPC_svc::reply function.

The final piece of the source code needed for this example is a separate C file. RPC.C
contains definitions of the RPC_svc::numProg and RPC_svc::progList static variables. The
RPC_svc::progList is a pointer to a dynamic array that keeps track of each RPC function cor-
responding to a unique combination of a program number, version number, and procedure
number. The RPC_svc::numProg contains the number of valid entries in the RPC_svc::pro-
gList array.
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The RPC.C file content is:

#include “RPC.h"
int RPC_sve:numProg = 0;
RPCPROG_INFO *RPC_svc::progList = 0;

The printmsg client and server programs are compiled (on a Sun’s Solaris 2.x system)
and run as follows: -

% CC-DSYSV4 -c RPC.C

%  CC -DSYSV4 msg_cis2.C RPC.o -0 msg_cls2 -Isocket -Insl
% CC -DSYSV4 msg_svc2.C RPC.o -0 msg_svc2 -Isocket -Insl
% msg_svc2 &

[135]

%  msg_cls2 fruit “Hello RPC world”

cint: call printmsg succeeds

In the above sample execution, both the client and server processes are run on a
machine called fruit. The server is run explicitly in the background, and the client is invoked

with the message string Hello RPC world. After the client runs, the server prints the message
server: ‘Hello RPC world’ to the system console of fruit.

To aid users in better understanding the operation of RPC classes, the low-level RPC
APIs are presented in the next few sections.

12.5.1 svC_create

The syntax of the svc_create function is:

- #include <rpc/rpe.h>

int sve_create (void (*dispatch)(struct sve_req*, SVCXPRT *),
u_long prognum, u_long versnum, char* nettype);

The svc_create function creates a transport end point for the given nertype value in a
server process. The server monitors all RPC calls to the given program and version numbers.
Furthermore, for each of these RPC requests, the dispatch function is called to respond to it.

The possible values and their meanings for the nettype argument are shown in Section
12.3.1. '
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The dispatch function is user-defined and takes two arguments. The first argument con-
tains client RPC call information that is useful when the server responds to the call. Specifi-
cally, the struct svc_req data type is defined by the <rpc/svc.h> header as:

struct svc_req

{
u_long rq_prog; /* service program number */
u_long rq_vers; /* service protocol version */
u_long rq_proc; /* the desired procedure */
struct opaque_auth rq_cred, /* raw cred. from the wire */
caddr_t rq_clntcred; /* read only cooked cred. */
struct __svexprt * rq_xprt; /* associated transport */

I8

where the rq_prog, rq_vers, and rq_proc fields contain the RPC function’s program,
version, and procedure numbers, respectively, that a client wishes to invoke. The rq_cred and
rq_clntcred fields contain client authentication data accessible by the dispatch function to
authenticate the client. The rg_xprt field contains the client transport information and ts gen-
erally ignored by the dispatch function.

The second argument of the svc_create is the transport end-point handle. It is passed to
the RPC function, which then uses it to get the function argument values from a client. It is
also used to send return values to the client. '

The return value of the function is a nonzero server handle if it succeeds, zero if it fails.

The ONC functions to create RPC server handles are:

#include <rpc/rpc.h>

SVCXPRT* svetcp_create ( int svr_addr, const u_long sendbuf_size,
const u_long recvbuf_size);

SVCXPRT* svcudp_create ( int svr_addr ),

The svctep_create and the svcudp_create functions are the TCP and UDP versions of
the svc_create function, respectively. Furthermore, these two functions use sockets as their
underlying communication method. Specifically, the svc_addr argument value is a socket
port number used by an RPC server to communicate with its clients. The socket port number
may be specified as RPC_ANYSOCK, which means it can be any port number assigned by

the host system.
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Finally, the sendbuf_size and recvbuf_size argument values specify buffer sizes to send
and receive data between a server and its clients.

12.5.2 svec_run

The syntax of the svc_run function is:

#include <rpc/rpc.h>

void svc_run (void );

This function is called by an RPC.server to waj\l for client RPC calls to arrive. When an
RPC call arrives, the function calls a dispatch function that was registered via the svc_create,
sve_tp_create, or svc_thH_create APIs to service the request.

This function does not return.

12.5.3 svc_getargs

The syntax of the svc_getargs function is:

#include <rpc/rpc.h>
boot_t svc_getargs (SVCXPRT* xprt, xdrproc_t* func, caddr_t argp);

This function is called by the RPC function in a server process. It is called to retrieve
function arguments that are sent by a client process. The xprt argument is a transport handle
that is connected to a client process. The argp argument holds the address of a variable where
client argument data are placed. Finally, the func argument is a pointer to an XDR function
that is used to deserialize client argument data to the server’s host machine data format.

This function returns TRUE if it succeeds, FALSE otherwise.

12.5.4 svc_sendreply

The syntax of the svc_sendreply function is:
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#include <rpc/rpc.h>
boot_t svc_sendreply (SVCXPRT* xprt, xdrproc_t* func, caddr_t resultp);

This function is called by an RPC function in a server process. It is called to send return
values to a client process. The xprr argument is a transport handle that connected to a client
process. The resultp argument holds the address of a variable where the function return val-
ues are placed. Finally, the func argument is a pointer to an XDR function used to serialize
the return value to XDR format.

This function returns TRUE if it succeeds, or FALSE otherwise.

12.5.5 cint_create

The syntax of the clnt_create function is:

#include <rpc/rpc.h>

CLIENT* cint_create (char* hostnm, u_long prognum, u_long versnum,
const char* nettype);

This function creates a handle to communicate with an RPC server. The hostnm argu-
ment is the name of the machine where the RPC server is running. The prognum and versnum
arguments identify the RPC server by the RPC program and version numbers. The nettype
argument specifies the transport used in connecting to the server process.

The possible values and meanings of the nettype argument are shown in Section 12.3.1.

The function return value is a nonzero client handle if it succeeds, NULL if it fails. If
the function fails, users may call the cint_pcreateerror API to print a more detailed error
diagnostic message to the standard output. The function prototype of the cint_pcreateerror
APl is:

void clnt_pcreateerror( const char® msg_prefix_string );

The msg_prefix_string argument is a user-defined message string that is depicted, along
with the diagnostic message from the clnt_pcreateerror function.
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12.5.6 cint_cal!

The syntax of the cint_call function is:

#include <rpc/rpc.h>

enum clnt_stat

cint_call (CLIENT?* cintp, u_long funcnum, xdrproc_t argfunc,
caddr_t argp, xdrproc_t resfunc, caddr_t resp,
struct timeval timv );

This function is called in a client process to invoke an RPC function. The clntp argu-
ment is the client handle obtained from a cint_create, cint_tp_create, or cint_tli_create API.
The funcnum argument is the RPC function procedure number. The argfunc argument is the
address of an XDR function used to serialize the client input argument data to XDR format
before they are sent to the RPC function. The resfunc argument is the address of an XDR
function used to deserialize RPC function return values to the client’s data format. Finally,
the timv argument specifies the time-out limit (in CPU seconds or microseconds) for this call.

The function return value is RPC_SUCCESS if it succeeds, a nonzero return code if it
fails. If it fails, the client process may call clnt_perror to print a more detailed error diagnos-
tic message to the standard output. The function prototype of the clnt_perror APl is:

void clnt_perror( const CLIENT* cintp, const char* msg_prefix );

The prefix_string argument is a user-defined character string that is depicted along witn
the diagnostic message from the cint_pcreateerror function. The clntp argument is the client
handle identifying the calling process.

12.6 Managing Multiple RPC Programs and Versions

The RPC classes can be used to create a server process that manages multiple RPC pro-
grams. Each program may contain one or more versions of a set of RPC functions. The fol-
lowing example illustrates how this is done.

The server program in this example maintains two RPC programs: The first program
number is PROGINUM, the second is PROG2NUM. PROGINUM contains two versions
(VERSINUM and VERS2NUM) of an RPC function whose procedure number is
FUNCINUM. The program also contains another RPC function whose version and program
numbers are VERSINUM and FUNC2NUM, respectively. The second program
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(PROG2NUM) consists of one RPC function whose version and procedure numbers are
VERS1NUM and FUNC2NUM, respectively. The declarations of these RPC program, ver-
sion, and procedure numbers are contained in the fest.h header:

#ifndef TEST_H
#define TEST_H

#define PROGINUM  0x20000010
#define PROG2NUM  0x20000015

#define VERSTNUM  Ox1
#define VERS2NUM 0Ox2

#define FUNC1NUM  Ox1
#define FUNC2NUM  0x2

#endif

The RPC server program is test_svc.C:

#include “RPC.h"
#include “test.h”

RPC_svc *svcip, *sve2p, *sve3p;

/* RPC function: prog_no=1, vers_no=1, proc_no=1"*/
int func1_1_1 (SVCXPRT" xprt)
{
cerr << “*** funci1_1_1 called\n”;
svcip->reply(xprt, (xdrproc_t)xdr_void, 0);
return RPC_SUCCESS;
}

/* RPC function: prog_no=1, vers_no=1, proc_no=2 */
int func1_1_2 (SVCXPRT" xprt)
t
cerr << “*** func1_1_2 called\n”;
svcip->reply(xprt, (xdrproc_t)xdr_void, 0);
return RPC_SUCCESS;
}

/* RPC function: prog_no=1, vers_no=2, proc_no=1*/
int funct_2_1 (SVCXPRT" xprt)
{

cerr << “* func1_2_1 called\n”;
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svc2p->reply(xprt, (xdrproc_t)xdr_void, 0);
return RPC_SUCCESS;
}

/* RPC function: prog_no=2, vers_no=1, proc_no=1 */
int func2_1_1 (SVCXPRT* xprt)
{
cerr << “*** func2_1_1 called\n”;
sve3p->reply(xprt, (xdrproc_t)xdr_void, 0);
return RPC_SUCCESS;
}

/* server main function */
int main(int arge, char* argv())
{
char* nettype = (argc>1) ? argv{1] : “netpath”;

/* create server handle for prog_no=1, vers=1 */
svcip = new RPC_svc ( PROG1NUM, VERS1NUM, nettype );

/* create server handle for prog_no=1, vers=2 */
svc2p = new RPC_svc ( PROG1NUM, VERS2NUM, nettype );

/* create server handle for prog_no=2, vers=1*/
svc3p = new RPC_svc ( PROG2NUM, VERS1NUM, nettype );

it (tsve1p->good() Il Isve2p->good() Il Isve3p->good())  {
cerr << “create server handle(s) failed\n”;
return 1;
}
/* register a function: prog_no=1, vers_no=1, proc_no=1,
func=func1_1_1*/
svcip->add_func( FUNCINUM, funct1_1_1);

/* register a function: prog_no=1, vers_no=1, proc_no=2,
func=func1_1_2*/
svcip->add_func( FUNC2NUM, funcl1_1_2);

I* register a function: prog_no=1, vers_no=2, proc_no=1,
func=func1_2_1*/
sve2p->add_func( FUNCINUM, func1_2_1);

/* register a function: prog_no=2, vers_no=1, proc_no=1,
func=func2_1_1%/
svc3p->add_func( FUNCINUM, func2_1_1);
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I* wait for clients’ RPC requests for all servers */
RPC_svc::run();
return O;

}

The server program takes an optional argument from the command line, which speci-
fies the correct transport type to use. If this is not specified, the default nettype value is “net-
path’.

The server creates three RPC_svc objects, one for each version of the RPC program it
manages:

RPC_svc Program Managed Version Managed
svcip PROG1NUM VERS1NUM
svc2p PROGINUM VERS2NUM
svc3p PROG2NUM VERS1NUM

Once all three RPC_svc objects are created successfully, the server registers the RPC
functions via RPC_svc objects. The name of each RPC function is constructed as: the prefix
string func, followed by a program number, an underscore, a version number, another under-
score, and finally, a procedure number. Thus, a function named func!_2_1 means the function
is version 2 of procedure 1 in RPC program 1.

After all the RPC functions are registered, the server calls the RPC_svc::run function
to wait for client RPC requests to arrive. When any one of these requests arrives, the
RPC_svc::dispatch function is called, which, in turn, calls one of the registered RPC func-
tions (according to the client’s specified program, version, and procedure numbers). . : :

The client program for this example is test_cls.C:

#include “RPC.h"
#include “test.h”

int main(int argc, char* argv()

if (argc <2) { o
cerr << “usage: “ << argv[0] << “ <server-host> [<nettype>]\n";
return 1;

}
char* nettype = (argc > 2) ? argv[2] : “netpath”;
while (1) {
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unsigned progid, progno, verno, procno;
/* get desire RPC program no, version no, and function no */
do {
cout << “Enter prog#, ver#, func#: * << flush;
cin >> progno >> verno >> procno;
if (cin.eof()) return 0;
} while (!cin.good());

/* translate user program no to internal number */
progid = (progno==1) ? PROG1NUM : PROG2NUM;

/* create a client handle to the requested RPC server */
RPC_cls *clsp = new RPC_cls ( argv[1], progid, verno, nettype),
if (\clsp->good()) {

cerr << “create client handle(s) failed\n”;

return 2;

}

/* call the user-requested RPC function */
if (clsp->call( procno, (xdrproc_t)xdr_void, O, (xdrproc_t)xdr_void, 0 )
= RPC_SUCCESS)
cerr << “client call RPC function fails\n”;

delete clsp;
}

return O;

}

The client program is invoked with the server host machine name, and optionally, a net-
tvpe value. If no nettvpe value is specified, it defaults to “netparh™.

The client program is an interactive program and prompts a user to enter the program,
version, and procedure numbers for each RPC function called. For each set of numbers
obtained the client process creates a RPC _cls object and calls the requested function via that
object. The client process terminates when EOF is encountered in the input stream.

The server and client programs are compiled and run as shown below. In the example,
both the server and client are run on a machine called fruir.

% CC -DSYSV4 test_cls.C RPC.C -o test_cls -Isocket -Insl
% CC -DSYSV4 test_svc.C RPC.C -0 test_svc -Isocket -Insi
%  test_svc &

[1235]

% test_cls fruit

Enter prog#, ver#, func#:1 1 1
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***tunc1_1_1 called

Enter prog#, ver#, func#: 112
*** func1_1_2 called

Enter prog#, ver#, func#:1 21
*** func1_2_1 called

Enter prog#, ver#, func#:2 1 1
“** func2_1_1 called

Enter prog#, ver#, func#: 110
Enter prog#, ver#, func#:4 12
fruit: RPC: Procedure unavailable
client call RPC function fails
Enter prog#, ver#, func#: A\D

In the above sample run, the RPC functions were called in this order: func/_I_1,
funcl_1_2, funcl_2_1, and func2_I_I. The user input / 1 0 causes the client to ping the RPC
server for the program PROGINUM (version VERSINUM). There is no response message
depicted for this ping operation. Finally, the user inputs 4 / 2 in an attempt to call a nonexist-
ent RPC function. and error messages are flagged from both the RPC_cls::call function and
the client test_cls.C program.

12.7 Authentication

Some RPC services are restricted to designated classes of users who can make use of
them. This requires client processes to authenticate themselves to the servers before
requested RPC functions can be called. UNIX systems provide a few basic authentication
methods for users and allow users to define their own authentication methods.

The UNIX System V.4 RPC built-in authentication methods are: AUTH_NONE,
AUTH_SYS, AUTH_SHORT, and AUTH_DES. The ONC RPC authentication methods are:
AUTH_NONE, AUTH_UNIX (equivalent to AUTH_SYS), and AUTH_DES. These authen-
tication methods are described in more detail in the following sections.

To support authentication, (whether it is a system-supplied or user-defined method) the
struct svc_req argument data passed from a client to an RPC server dispatch function speci-
fies the target function’s numbers (program, version, and procedure) and client authentication
data. Specifically, the struct svc_req type is declared as:

struct svc_req

{
u_long rq_prog; /* service program number */
u_long rq_vers; /* service protocol version */
u_long rq_proc; /* the desired procedure */
struct opaque_auth rq_cred; /* raw cred. from the wire */
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caddr_t rq_clintcred; /* read only cooked cred */
struct __svexprt * rq_xprt; /* associated transport */

|3

where the struct opaque_auth data type is declared in the <rpc/auth.h> header as:

struct opaque_auth

{
enum_t oa_flavor; /* authentication method */
caddr_t oa_base; /* pointer to custom auth. data */
u_int oa_length; /* size of the data pt. by oa_base */
2

The opaque_auth::0a_flavor field specifies which authentication method is used by the
client. If the argument value is AUTH_NONE, AUTH_SYS, AUTH_SHORT, or
AUTH_DES, the opaque_auth::oa_base and opaque_auth::oa_length fields are don’t-care.
The svc_req::rq_clinicred field points to a data record that contains the corresponding authen-
tication data.

However, if the opaque_auth::0a_flavor field value is not one of the AUTH_xxx, the
opaque_auth::oa_base field points to a user-defined authentication data record, and the
opaque_auth::oa_length field contains the size of the data record referenced by the
opaque_auth::oa_base field.

The following three sections examine the UNIX system built-in RPC authentication
methods. Users can create their own authentication methods based on these.

12.7.1 AUTH_NONE

This is the default UNIX System V RPC authentication method, which actually does
not use any authentication at all. A client can explicitly set this authentication method by call-
ing the authnone_create API, as follows:

CLIENT" ciIntp = cint_create( ... );

if (cintp)  {
cintp->cl_auth = authnone_create();
cint_call (cintp, ...);

}

After a client calls the authnone_create function, any RPC dispatch functions called by
this client receive the svc_req: rq_cred.oa_flavor value as AUTH_NONE. These functions
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should ignore the svc_req::rq_cred.oa_base, svc_req::rg_cred.ou_length, and the
svc_req::rq_clntcred values.

12.7.2 AUTH_SYS (or AUTH_UNIX)

This method uses the UNIX system process access control method, which is based on
process user ID and group GID to authenticate clients. A client can explicitly set this authen-
tication method by calling the authsys_create_default API, as follows:

CLIENT" cintp = cint_create( ... );

if (cIntp) {
cintp->cl_auth = authsys_create_default();

cint_call (cintp, ...);

}

After a client calls the authsys_create_default function, any RPC dispatch functions
called by this client will receive the svc_req::rq_cred.oa_flaver value as AUTH_SYS, and the
svc_req::rq_clnicred field will point to a data record with the following structure:

struct authsys_parms

{
u_long aup_time; /* auth. data creation time */
char* *aup_machname;/* client's machine name */
uid_t aup_uid; /* client’s effective UID */
gid_t aup_guid; /* client’s effective GID */
u_int aup_len; /* no. of entry in aup_gids */
gid_t* aup_gids; /* client’s supplemental GIDs */
15

An example of a server dispatch function that checks client authentication is:

int diaptch ( struct svc_req* rgstp, SVCXPRT" xtrp )
{
struct authsys_parms* ptr
switch (rqstp->oa_flavor) {
case AUTH_NONE:
break;
case AUTH_SYS:
ptr = (struct authsys_parms*)rqstp->rq_cintcred;
if (ptr->aup_uid !=0) {
svcerr_systemerr(xtrp);
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return;
)
break;
case AUTH_DES:

break;

default:
svcerr_weakauth( xtrp );
return;

)
* perform or call the actual RPC function */

In the above example, the RPC server skips checking client authentication if it is speci-
fied as AUTH_NONE in the rgstp->rq_cred.oa_flavor. However, if the client’s selected
authentication method is AUTH_SYS, the server checks whether the client effective UID is
superuser, (via the rgstp->rq_clintcred.aup_uid argument). If it is not, the svcerr_systemerr
API is called by it to print a system error message. This is just an example, and real user
applications may authenticate client UIDs and/or GIDs in any way they desire.

If a client authentication is none of the system default methods, the server calls the
svcerr_weakauth API to send an “unsupported” authentication error to the client.

The function prototypes of the svcerr_weakauth and svcerr_systemerr APIs are:

void  svcerr_weakauth ( const SVCXPRT* xtrp );
void sveerr_systemerr ( const SVCXPRT* xtrp );

The xtrp argument to both of the above functions is a transport handle for communica-
tion with a client process. This argument value is passed as the second argument to an RPC
server’s dispatch function.

Note that ONC provides the authunix_create_default APl instead of
authsys_create_default, and that the AUTH_SYS and AUTH_SHORT constants are replaced
by the AUTH_UNIX constant. However, the underlying authentication method based on pro-
cess UIDs and GIDs are the same on all UNIX systems.
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12.7.3 AUTH_DES

The AUTH_SYS authentication method is simple to use but is not secured because cli-
ent identification, namely, UID and GID, are not guaranteed unique on the Internet. Further-
more, a client can easily alter the c/->cl_auth data to change its identity to someone else
before it makes an RPC call. To remedy these defects, the AUTH_DES was created to pro-
vide a more sophisticated authentication method for RPC applications.

To use the AUTH_DES method, a client process first needs to call the user2netname
API to get a “netname” that is guaranteed to be unique on the entire Internet. This netname is
constructed by taking the domain name of the client process and prepending it with the name
of the process operating system and effective UID. For example, if a process is running on a
UNIX machine in the domain TJSys.com and the process’s effective UID is 125, its netname
is unix. 125@TJS.vscom. This netname is unique because a domain name is always unique on
the Internet. Furthermore, within a domain, each UID should be unique among all machines
running the same operating system. Thus, if the 7JSys.com domain contains VMS machines
that also have a user with the UID of 125, the netname of any process created by that user is
vms. 125@TJSys.com. This differentiates it from the UNIX process with the same UID and
domain.

As an alternative to the user2netname API, a process may call the host2netname APIto
get a netname for the machine on which it is running. This netname is guaranteed to be
unigue on the Internet, but it refers to a machine and not a user. In the above example, if the
process is running on a UNIX machine called fruit, the netname returned by host2netname is
unix.fruit@TJSys.com. The choice of which APl (user2netname or host2netname) to use
depends on whether users want their RPC applications to check authentication at the user
level or at the machine level.

The syntax of the user2netname and host2netname APIs are:

#include <rpc/rpc.h>

int  user2netname (char netname[ MAXNETNAMELEN+1],
uid_t eUID, const char* domain );

int  host2netname (char netname{MAXNETNAMELEN+1],
const char* hostnm, const char* domain );

The first argument of both functions is a character buffer of at least MAXNET-
NAME-+1 size. This is to hold the returned unique name of the process. The second argument
of the user2netname is the effective UID of the process, whereas the second argument to the
host2netname is the host machine name. The third argument to both functions is the process
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domain name. If the domain argument value is passed as NULL, local domain name is
assumed.

These functions return 1 if they suéceed, 0 if they fail.

To create an AUTH_DES data record in a client process, the authdes_seccreate API is
called. The function prototype of this API is:

#include <rpc/rpc.h>

int  authdes_seccreate (char netname[MAXNETNAMELEN+1],
unsigned window, const char* time_host, const des_block* ckey);

The netname argument value is either the calling process netname or its host machine
netname. This specifies the identity of the client process.

The window argument specifies a time period, in seconds, when the client credential as
established, by this call will expire. If an RPC server receives an RPC call from a client that
was authenticated more than window seconds later, the server will reject the request.

The time_host argument specifies a machine name upon which the authentication time
stamp is based. This is usually the target RPC server’s machine name. If this argument is
specified as NULL, there is no need to synchronize client and server time.

The ckey argument is a DES key that is used to encrypt the client credential. This key is
used by the target server to decrypt the credential. If this argument is specified as NULL, the
operating system generates a random DES key for it. A client can explicitly get a DES key via
the key_gendes API.

: The authdes_seccreate AP returns an AUTH* pointer that points to the encrypted cli-
ent credential if it succeeds; NU_LL\i_f itfails. RS e

Loatig FEATTS

i

The key_gendes APE creates.aDES key for a calling progess. Its function prototype is:

Pl
PEEM RS
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giiment of the key_gendes function is the address of a des_block: typed variable.
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On an RPC server side, a server can retrieve a client’s DES credential via either the
authdes_getucred or the netname2host APL. Specifically, the authdes_getucred is used if the
credential is a user netname (obtained via the user2nername API). This API decrypts the cre-
dential and returns the client UID and GID(s) to the server. On the other hand, if the client
credential is a machine nethame (obtained via the host2netname API), the netname2host API
is called to extract the client host machine name accordingly.

The function prototypes of these APIs are:

#include <rpc/rpc.h>

int  authdes_getucred (const struct authdes_cred* adc,
uid_t* uid_p, gid_t* gid_p, short* len_p, gid_t* gidArray);

int  netname2host (const char* netname, char* hostname, int len);

For the authdes_getucred API, the adc argument value is obtained via the rgstp argu-
ment of the server dispatch function. Specifically, the rgstp->rq_cintcred field is the value for
the adc argument. This argument points to the client’s encrypted credential.

The uid_p and gid_p arguments are addresses of variables that hold the returned UID
and GID of a client, respectively.

The gidArray and len arguments are address of variables that hold the returned array of
supplemental GIDs and the number of client entries, respectivelv.

For the netname2host API, the netname argument value is obtained via the rgstp argu-
ment of the server dispatch function. Specifically, the rgstp->rq_clintcred-
>adc_fullname.name field is the value for the netname argument.

The hostname argument is the address of a character buffer that holds the returned cli-
ent host machine name. The len argument specified the maximum size of the buffer pointed
to by the hostname argument.

Both the authdes_getucred and netname2host functions return 1 if they succeed, 0 if
they fail. Note that in the RPC classes defined in Section 12.5, the RPC_cls::set_ auth may be
called by a client process to set the AUTH_SYS or AUTH_DES credential. If the
AUTH_DES method is used, the client’s credential is based on its effective UID and GID

On the server side, the RPC_svc::dispatch function checks each client credential
according to the authentication method used. If a client uses. the AUTH _NONE method, the
dispatch function simply skips the credential check. This 1 may not be allowed in real life
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secured RPC applications. The users may change the dispatch function to flag an error and
refuse to execute the requested RPC function if the client specifies the AUTH_NONE
method. Furthermore, if a client uses the AUTH_DES method, the dispatch function calls the
authdes_getucred API to extract client UID and GID(s). This is acceptable as long as the
RPC _cls::set_auth calls the user2netanme API only (and not host2netname) to create the cli-
ent’s credential. However, if a user’s application uses host2netname and/or user2netname to
generate client credentials, the RPC_svc: :dispatch function should be changed accordingly.

12.7.4 Directory Listing Example with Authentica-
tion

This directory listing example is shown in Section 12.3.3 is shown again below, but re-
wnitten with the following changes:

* It uses RPC classes instead of rpcgen
* Itillustrates how a client process pings a server process
* It illustrates RPC authentication mechanism

The RPC.h and RPC.C files are as shown in Section 12.5. The scan2.h file is created
manually as follows:

#ifndef SCAN2_H
#define SCAN2_H

#include <rpc/rpc.h>

#define MAXNLEN 255
typedef char *name_t;
typedef struct arg_rec *argPtr;

struct arg_rec

{

name_t dir_name;
int iflag;
h

typedef struct arg_rec arg_rec;
typedef struct dirinfo *infolist;

struct dirinfo

{
name_t name;
u_int uid;
long modtime;
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infolist next;
|5

typedef struct dirinfo dirinfo;

struct res
{
int errnc;
union
{
infolist list;
}res_u;
|3

typedef struct res res;

#define SCANPROG ((unsigned long)(0x20000100))
#define SCANVER ((unsigned long)(1))
#define SCANDIR ((unsigned long)(1))

extern “C” bool_t xdr_name_t(XDR *, name_t");
extern “C" bool_t xdr_argPtr(XDR *, argPtr*);
extern “C” bool_t xdr_arg_rec(XDR *, arg_rec");
extern “C” bool_t xdr_infolist(XDR *, infolist*);
extern “C” bool_t xdr_dirinfo(XDR *, dirinfo”);
extern “C” bool_t xdr_res(XDR *, res*),

#endif /* ISCAN_H */

The client program scan_cls2.C is:

#include <errno.h>
#include “scan2.h”
#include “RPC.h"

int main( int argc, char* argv(l)

{

static res result;
infolist ni;

if (arge<3) {

Authentication

cerr << “usage: “ << argv[0] << “ host directory [<long>]\n";

return 1;

}

/* create a client RPC hanide */

RPC_cls cl( argv[1), SCANPROG, SCANVER, “netpath”);
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Authentication
if (\cl.good()) return 1;

/* set authentication credential base on DES encryption method */
cl.set_auth( AUTH_DES );

/" ping the RPC server to make sure it is alive */
if (cl.call( 0, (xdrproc_t)xdr_void, 0, (xdrproc_t)xdr_void, 0 } ==
RPC_SUCCESS)
cout << “Prog “ << SCANPROG << “/* << SCANVER << “) is alive\n”;
else {
cerr << “Prog “ << SCANPROG << “/ << SCANVER <<“is dead\n”;
return 2;

}

/* allocate memory to hold the return directory listing */
struct arg_rec *iarg = (struct arg_rec*)malloc(sizeof(struct arg_rec));

iarg->dir_name = argv[2]; // set remote directory name
iarg->lflag = 0; // set long listing flag
if (argc==4 && sscanf(argv{3],"%u" &(iarg->lflag))!=1) {

cerr << "Invalid argument: “ << argv{3] << endl;

return 3;

}

* Call the RPC function */

if (cl.call{ SCANDIR, (xdrproc_t)xdr_argPtr, (caddr_t)&iarg,
(xdrproc_t)xdr_res, (caddr_t)&result) = RPC_SUCCESS)

{

cerr << “client: call RPC fails\n”;
return 4;

}

/" RPC call completed. Check the function’s return code */
if (result.errno) {

errno = result.errno;

perror(iarg->dir_name);

return 5;

}

/* RPC function completes successfully. Now list remote dir content */
for (nl=result.res_u.list; ni; ni=nl->next) {
if (iarg->iflag)
cout << “..” << nl->name << “, uid=" << ni->uid << “ mtime="
<< ctime(&ni->modtime) << endl;
else cout << “..” << nl->name << “\n";

}
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return O;

}

The client program is invoked with the server host machine name, a remote directory
name, and possibly, an integer flag. The remote directory name is the directory whose content
is to be returned by the RPC function. The optional integer flag specifies whether the returned
directory listing should be in detailed (Iflag=1) format or with file names (Iflag=0) only.

If a client program is invoked with the correct arguments, it creates a RPC_cls object
for connection with a server via the RPC_cls::RPC_cls constructor function. The RPC server
is identified by the SCANPROG, SCANVER, and SCANFUNC constants (the RPC program,
version, and procedure numbers).

Once the client RPC_cls object is created, the client process calls the
RPC cls::set_auth function to generate a client credential using the AUTH_DES method.
The RPC_cls::set_auth function can create authentication credentials by using
AUTH_NONE, AUTH_SYS, or AUTH_DES can hide all low-level RPC authentication APIs
from users.

After the client credential is set up, the client calls the RPC server with a procedure
number of 0. This is to ping the RPC server to make sure it is alive. If the RPC_cls: :call func-
tion fails, the client prints an error message to that effect and quits; otherwise, client execu-
tion continues.

The client allocates dynamic memory for the iarg variable to store the input argument
in the RPC function: a remote directory name and a long listing flag. The client calls the RPC
function via the RPC_cls::call function and specifies that its return value be stored in the
result variable. Furthermore, the XDR functions for the input argument and return value are
the user-defined xdr_argPtr and xdr_res functions, respectively.

If the RPC function returns a success status code, the client program prints the RPC
function return value (the remote directory content listing) to the standard output. Note that if
the directory listing format flag is 1, the printout for each file consists of the file name, UID,
and last modification time. If, however, the directory listing format flag is zero, only the name
of each file in the remote directory is shown.

The server program that provides the remote directory listing service is in the
scan_svc2.C file:

#include <stdio.h>

#include <stdlib.h>
#include <dirent.h>
#include <string.h>
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#include <malioc.h>
#include <errno.h>
#include <sys/stat.h>
#include “scan2.h”
#include “RPC.h"

static RPC_svc *svcp = 0;

/* The RPC function */
int scandir( SVCXPRT* xtrp )
{
- DIR *dirp;
struct dirent *d;
infolist nl, *nip;
struct stat statv;
res res;
argPtr darg = 0,

/* Get function argument from a client */
it (svep->getargs( xtrp, (xdrproc_t)xdr_argPtr,
(caddr_t)&darg)!=RPC_SUCCESS)
return -1;

/* start scaning the requested directory */

if (!(dirp = opendir(darg->dir_name)))  {
res.errno = errno;
(void)svep->reply(xtrp, (xdrproc_t)xdr_res, (caddr_t)&res);
return -2;

}

/* free memoryallocated from a previous RPC call */
xdr_free((xdrproc_t)xdr_res, (char*)&res);
/* store files’ informaton to res as the return values */
nlp = &res.res_u.list;
while (d=readdir(dirp)) {
nl = *nip = (infolistymalloc(sizeof(struct dirinfo));
ni->name = strdup(d->d_name);
nip = &nl->next;
if (darg->iflag) {
char pathnm([256];
sprintf(pathnm,"%s/%s",darg->dir_name,d->d_name);
if (Istat(pathnm,&statv))  {
ni->uid = statv.st_uid;
nl->modtime = statv.st_mtime;

}
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*‘nip=0;
res.ermo = 0;
closedir(dirp);

* Send directory listing to client */
if (svep->reply(xtrp, (xdrproc_t)xdr_res,
(caddr_t)&res)!l=RPC_SUCCESS)
return -2;

return RPC_SUCCESS;
}

/* RPC server's main function */

int main(int argc, char* argv[])

{
svcp = new RPC_svc( SCANPROG, SCANVER, “netpath”);
if (svep->run_func( SCANDIR, scandir )) return 1;
return 0; /* shouldn’t get here */

}

The above program creates an RPC server that provides a directory listing service.
There is no command line argument needed to invoke the program.

The process creates a RPC_svc object via the RPC_svc::RPC_svc constructor function.
After this is done, the server calls the RPC_svc::run_func function to register the scandir
RPC function to the RPC_svc object and waits for client RPC calls to arrive.

When a client RPC call arrives, the RPC_svc: :dispatch function is called. This function
first checks whether the requested RPC procedure number is zero. If the client is pinging the
server, this function simply returns with a NULL reply. This completes the server response to

a ping request.

If a client is not pinging the server, the dispatch function checks the client credentiat
according to the authentication method specified. If the authentication check fails, the dis-
patch function raises an RPC system error and quits. The current RPC_svc::dispatch function
accepts only clients whose UIDs are either zero (superuser) or the same as that of the server
process.

After the client credential is verified as correct, the dispatch function finds the
requested RPC function and invokes it. In this example, the only RPC function is printmsg;
which performs the following operations when invoked:

« It obtains function arguments from a client process
« It frees any dynamic memory allocated for the res variable in a previous call
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* It scans the requested directory and puts information from all files in that directory
to the res variable

* It sends the res variable as return value to the calling client

The final pieces of code in this example are the XDR functions for user-defined data
types (e.g., struct arg_rec, argPtr, infolist, etc.). These XDR functions are defined in the
scan2_xdr.c file:

#include “scan2.h”

/* XDR function for the name_t data type */

bool_t xdr_name_t(register XDR *xdrs, name_t *objp)

{
register long *buf;
if (!xdr_string(xdrs, objp, MAXNLEN)) return (FALSE);
return (TRUE);

}

/* XDR function for the argPtr data type */
bool_t xdr_argPtr(register XDR *xdrs, argPtr *objp)

register long *buf;
if (Ixdr_pointer(xdrs, (char **)objp, sizeof (struct arg_rec), (xdrproc_t)
xdr_arg_rec))
return (FALSE);
return (TRUE);

}4

/* XDR function for the arg_rec data type */
bool_t xdr_arg_rec(register XDR *xdrs, arg_rec *objp)
{
register long *buf;
if (Ixdr_name_t(xdrs, &objp->dir_name)) return (FALSE);
if (!xdr_int(xdrs, &objp->Iflag)) return (FALSE);
return (VRUE);
}

/* XDR function for the infolist data type */
bool_t xdr_infolist(register XDR *xdrs, infolist *objp)
{
register long**buf;
if ('xdr_pointer(xdrs, (char **)objp, sizeof (struct dirinfo), (xdrproc_t)
xdr_dirinfo))
return (FALSE);
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}

Authentication

return (TRUE);

/* XDR function for the dirinfo data type */
bool_t xdr_dirinfo(register XDR *xdrs, dirinfo *objp)

{

}

register long *buf;

if (Ixdr_name_t(xdrs, &objp->name)) return (FALSE);
if (Ixdr_u_int(xdrs, &objp->uid)) return (FALSE);

if (\xdr_long(xdrs, &objp->modtime)) return (FALSE);
if (!xdr_infolist(xdrs, &objp->next)) return (FALSE);
return (TRUE);

/* XDR function for the res data type */
bool_t xdr_res(register XDR *xdrs, res *objp)

{

}

register long *buf;
if (!xdr_int(xdrs, &objp->errno)) return (FALSE);
if (objp->errno==0) { )
if (Ixdr_infolist(xdrs, &objp->res_u.list)) return (FALSE);

}
return (TRUE),

The above XDR functions should be self-explanatory. These XDR functions can be
generated manually or via the rpcgen. For the latter, users need to declare their data types in a
rpcgen x file and use rpcgen-specific data types, such as string, where applicable.

The above client and server programs are created by the following shéll commands:

%
%

%

CC -c scan2_xdr.c RPC.C

CC -DSYSV4 -0 scan_svc2 scan_svc2.C scan2_xdr.o \
RPC.o -Isocket -Insl

CC -DSYSV4 -0 scan_cls2 scan_cls2.C scan2_xdr.o \
RPC.o -Isocket -Insl

The sample run of the client and server programs are shown below. The server program
is run on a machine called fruit, whereas the client program may be run on any machine that
is connected to fruit. :

%

scan_svc2 &

[1] 955
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% scan_cls2 fruit .

...scan_cls2.C

...scan_svc2.C

..RPC.C

...RPC.h

...scan2_xdr.c

...scan2.h

...scan_svec2

...scan_cls2

Prog 536871168 (version 1) is alive

12.8 RPC Broadcast

Some RPC requests may require a response from all servers on the network that pro-
vides the requested services. For example, a client process may wish to set the system clock
of all machines on the LAN. Assume there is an RPC server running on each machine and
that its effective user ID is the superuser. The client process broadcasts the new clock time to
all these servers with one RPC call, and each server updates its system clock accordingly.

To use RPC broadcasting, a process can use the RPC_cls: :broadcast member function.
This is a static function and does not require an RPC_cls object be created prior to making
the call. This function, in turn, calls the rpc_broadcast API to implement the broadcast. The
function prototype of the rpc_broadcast API is:

#include <rpc/rpc.h>

enum clnt_stat rpc_broadcast (unsiged prognum, unsigned versnum,
unsigned funcnum, xdrproc_t argfunc, caddr_t argp,
xdrproc_t resfunc, caddr_t resp, resultproc_t calime, char* nettype);

The prognum, versnum, and funcnum arguments are the numbers of an RPC function to
be invoked.

The argfunc argument is the address of an XDR function used to serialize/de-serialize
the RPC function argument as specified in the argp argument. Similarly, the resfunc argument
is the address of an XDR function used to serialize/deserialize the RPC function return value
to be placed in the resp argument.
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The nettype argument specifies the transport to be used for the RPC broadcast call. This
must be a connectionless transport protocol, such as UDP. The default value for nettype in the
RPC_cls::broadcast function is “datagram_v”, which can use any “visible” datagram trans-
port as specified in the /etc/netconfig file. Two other rpc_braodcast restrictions are: (1) a
broadcast request may not exceed the MTU (maximum transfer unit) limits of its host
machine (for Ethernet-based machines, the MTU limit is 1500 bytes); and (2) only servers
Jat are registered with the rpcbind daemon can respond to RPC broadcasts. This is the case if
a server is created via the svc_create or svc_tp_create APIs.

The callme argument is a user-defined function that is called for each RPC server
response. The function prototype of the callme function is:

int callme ( caddr_t resp, struct netbuf* server_addr, struct netconf* nconf);

where the resp argument is the same resp value specified in the rpc_broadcast call.
This is the address of a variable defined in the client process that holds the server return
value. The server_addr argument contains a responding server address. The nconf argument
contains the network transport information used by the server.

Once the rpc_braodcast function is called. it blocks the calling process to wait for
server responses. For each RPC server response, the function calls the calime function to ser-
vice the response. If the callme function returns a 0 value, the rpc_broadcast waits for
another server response to arrive. On the other hand, if the callme function returns a nonzero
value, the rpc_braodcast function terminates and returns control to the calling process.

The rpc_broadcast function returns an RPC_TIMEDOUT value if it has waited and
uied the broadcast several times without getting any server response. It returns an
RPC_SUCCESS value if the callme function returned TRUE; otherwise, it returns a nonzero
value to indicate an error.

The rpc_broadcast function uses the AUTH_SYS method to authenticate the calling
process to all RPC server processes that receive the broadcast call.

Note that in ONC, the rpc_broadcast API is replaced by the cint_broaacast APIL. The
two functions have almost the same signature and return value, except that the clnt_broadcast
API does not use the netrype argument.

#include <rpc/rpe.h>

enum clnt_stat clnt_broadcast (unsiged prognum, unsigned versnum,

unsigned funcnum, xdrproc_t argfunc, caddr_t argp,
xdrproc_t resfunc, caddr_t resp, resultproc_t callme );
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Furthermore, the callback function prototype for the cint_broadcast API is:
int callme ( caddr_t resp, struct sockaddr_in* server_addr );

where the resp argument is the same resp value as specified in the clnt_broadcast call.
This is the address of a variable defined in the client process that holds the server return
value. The server_addr argument contains a responding server address. Its data type is a
pointer to a socket address.

12.8.1 RPC Broadcast Example

The msg_cls2.C program shown in Section 12.5. is rewritten below using RPC broad-
cast. Only the client program is changed. The new client program msg_cls3.C is:

/* client program: use broadcast to print msg on server’s system console */
#include “msg2.h”
#include “RPC.h”

static unsigned int num_responses = 0;

/* client’s broadcast call back function*/
bool_t callme (caddr_t res_p, struct netbuf* addr, struct netconfig “nconf)
{

NUM_responses++; / keep track of no.of server responded

if (res_p==0 Il *((int*)res_p)!=0) {
cerr << “cint: call printmsg fails\n”;
return TRUE; /* stop broadcast due to error */
}
cout << “cint: call printmsg succeeds\n”;
return FALSE; /*wait for more response */
}

* client main function */
int main(int argc, char* argv(])
{

int res;
if (arge<2) {
cerr << “usage: “ << argv{0] << * msg <transport>\n";
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return 1;
)
/* client sends a broadcast request and waits for responses */
int rc = RPC_cls::broadcast{ MSGPROG, MSGVER, PRINTMSG,
(resultproc_t)callme, (xdrproc_t)xdr_string, (caddr_t)&argv[1],
(xdrproc_t)xdr_int, (caddr_t)&res);

switch (rc) {
case RPC_SUCCESS: break;
case RPC_TIMEDOUT: if (num_responses) break;
defauit: cerr << “RPC broadcast failed\n”;

return 2;

cout << “RPC broadcast done. No reponses: “ < <num_responses
<< endl;
return O;

}

The new printmsg client program takes one command line argument and broadcasts it
as the message. It calls the RPC_cls::broadcast function to broadcast the message. In the
RPC_cls::broadcast call, the client process specifies callme as the function to be called by
the rpc_broadcast API for each server response. Furthermore, the printmsg’s argument and
XDR function, as well as the variable holding the printmsg return value and XDR function,
are set in the RPC_cls::broadcast function call in the same manner as in an RPC_cls::call
function call.

The callme function is called for each server response to the broadcast. The function
simply checks that the return value succeeds or does not. The function returns TRUE to stop
the broadcast if the server return value is a failure or FALSE to continue receiving more
server responses. The callme function increments the global variable num_responses to keep
track of the number of servers actually responding to the broadcast.

After the RPC_cls::broadcast call returns, the client program checks the function
return status code. If the status code is RPC_SUCCESS, the broadcast was terminated by the
callme function and all is well. 'However, if the status code is RPC_TIMEDOUT, then the
num_responses variable is checked to see whether any server responded to the broadcast. If
there are none (the num_responses value is zero), the RPC broadcast failed, and an error mes-
sage is flagged to the user. On the other hand, if the num_responses variable value is nonzero,
it means that the RPC broadcast was successful. The rpc_broadcast function returns because
all servers responded to the broadcast.

The sample run of the server program, msg_svc2 (as shown in Section 12.5) and the
new client program, msg_cls3, which runs in RPC broadcast mode, is:
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% CC -DSYSV4 -0 msg_cls3 msg_cls3.C RPC.C -Isocket -insl
%  msg_cls3 “Testing RPC broadcast feature”

clnt: call printmsg succeeds

clnt: call printmsg succeeds

The system consoles on al! machines running the msg_svc2 daemon print the message
Testing RPC broadcast feature.

12.9 RPC Call Back

In some RPC applications, it may be desirable for a server to call a client process back
after some period of time. This allows the client process to do some other work in the mean-
time. An example of this is when a client process requests an RPC server process to execute a
time-consuming function but does not wish to wait for the RPC function to finish before con-
tinuing execution. Instead, the client specifies an RPC function that the server can call when
it is ready to send results back to the client. Thus, the client and server can both be doing use-
ful work concurrently, improving overall system efficiency.

For an RPC server to call a client back, the client must define an RPC program number,
a version number, and a procedure number for the callback function. In a sense, the client is
acting as both an RPC client and a server.

The following example prograrns illustrate how this is aone. In the example, the RPC
server provides an alarm clock service to processes on the LAN. A client process that desires
this service sends an RPC call to the server and specifies the following information:

* The client process host machine name
* The client’s callback RPC function program, version, and procedure numbers
* The alarm clock period, in seconds

When the RPC server receives a request from a client, it forks a child to set up an alarm
signal, which is sent to the child process after the client-specified alarm clock period expires.
When the alarm period does expire, the child process makes an RPC call to the client call-
back function to inform it of that fact and afterward terminates itself. During all this process-
ing, the RPC server is continuously monitoring for other client alarm service requests. The
original client process is working on something else during the alarm clock period.

The header file, aclock.h, is shared by the client and server programs:
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#itndef ACLOCK_H

#define ACLOCK_H

#include <rpc/rpc.h>

#define MAXNLEN 255

typedef char *name_t;

* client’s call-back information to the RPC server */

struct arg_rec

{
name_t hostname; // client’s host machine name
u_long  prognum; // client's RPC function program no.
u_long  versnum; // client's RPC function version no.
u_long  funcnum; // client’'s RPC function procedure no.

u_long atime; // alarm clock time

b

/I* client's call-back RPC functions’ version no. and procedure no. */

#define CLNTVERNUM 1

#define CLNTFUNCNUM 1

/* servers RPC function’s program number, version no., and function no. */
#define ACLKPROG ((unsigned long)(0x20000100))
#define ACLKVER ((unsigned long)(1))

#define ACLKFUNC ((unsigned long)(1))

/* XDR functions for conversion of client’s call-back data */
extern bool_t xdr_name_t(XDR *, name_t");
extern bool_t xdr_arg_rec(XDR *. arg_rec”),

#endif /* !ACLOCK_H */

The RPC server program, aclk_svc.C. is:

#include <signal.h>
#tinclude “aclock.h”
#include “RPC.h"

RPC_svc *svep; | // the RPC server handle
static struct arg_rec argRec; // contains a client’s call-back info

/* make an RPC tall to a client’s call-back function */
void call_client( int signum )

{

u_long timv= alarm(0); /* alarm time remaining */

503



Chap. 12. RPC Call Back

RPC_cis cls( argRec.hostname, argRec.prognum,
‘ argRec.versnum, “netpath”);
if (Icls.good()) {
cerr << “call_client: create RPC_cls object failed\n”;
exit(1);
}

if (cls.call( argRec.funcnum, (xdrproc_t)xdr_u_long, (caddr_t)&timv,
(xdrproc_t)xdr_void, 0 )!=RPC_SUCCESS)
cerr << “call_client: call client failed\n”;

exit(0); /* kill the child process */
}

/* server's RPC function. Invoked by a client to setup an alarm service */
int set_alarm( SVCXPRT* xtrp )
{

/* Get client’s info: host name, RPC call-back function’s program no,

version no, and procedure number

*/ :

if (svep->getargs( xtrp, (xdrproc_t)xdr_arg_rec, (caddr_t)&argRec)
I=RPC_SUCCESS)
return -1,

/* send a dummy reply to client */

if (svep->reply( xtrp, (xdrproc_t)xdr_void, 0)!'=RPC_SUCCESS) {
cerr << “printmsg: sendreply failed\n”;
return -2;

}

/* create a child process to handle this client */
switch (fork()) {
case -1: perror(“can’t fork™);
break;
case 0: /* child process */
alarm(argRec.atime);
signal(SIGALRM, call_client);
pause(); // wait for alarm to expire

}

I* parent process. Return to main loop to service other clients*/
return RPC_SUCCESS;

}

int main(int argc, char* argv(])



